
- •Оглавление
- •9. Тестирование программных продуктов …………………..263
- •10. Отладка программного обеспечения …………………..287
- •11.Составление программной документации …………………..300
- •Предисловие
- •Введение
- •1. Технология программирования. Основные понятия и подходы
- •1.1. Технология программирования и основные этапы ее развития
- •1.2. Проблемы разработки сложных программных систем
- •1.3. Блочно-иерархический подход к созданию сложных систем
- •1.4. Жизненный цикл и этапы разработки программного обеспечения
- •1.5. Эволюция моделей жизненного цикла программного обеспечения
- •1.6. Ускорение разработки программного обеспечения. Технология rad
- •1.7. Оценка качества процессов создания программного обеспечения
- •Контрольные вопросы
- •2. Приемы обеспечения технологичности программных продуктов
- •2.1. Понятие технологичности программного обеспечения
- •2.2. Модули и их свойства
- •2.3. Нисходящая и восходящая разработка программного обеспечения
- •2.5. Стиль оформления программы
- •2.6. Эффективность и технологичность
- •2.7. Программирование «с защитой от ошибок»
- •2.8. Сквозной структурный контроль
- •Контрольные вопросы и задания
- •3. Определение требований к программному обеспечению и исходных данных для его проектирования
- •3.1. Классификация программных продуктов по функциональному признаку
- •3.2. Основные эксплуатационные требования к программным продуктам
- •3.3. Предпроектные исследования предметной области
- •3.4. Разработка технического задания
- •1.Введение
- •2. Основание для разработки
- •3. Назначение
- •4. Требования к программе или программному изделию
- •5. Требования к программной документации
- •4. Требования к программе или программному изделию
- •5. Требования к программной документации
- •1. Введение
- •2. Основание для разработки
- •3. Назначение
- •4. Требования к программе или программному изделию
- •5. Требования к программной документации
- •3.5. Принципиальные решения начальных этапов проектирования
- •Контрольные вопросы и задания
- •4. Анализ требований и определение спецификаций программного обеспечения при структурном подходе
- •4.1. Спецификации программного обеспечения при структурном подходе
- •4.2. Диаграммы переходов состояний
- •4.3. Функциональные диаграммы
- •4.4. Диаграммы потоков данных
- •4.5. Структуры данных и диаграммы отношений компонентов данных
- •4.6. Математические модели задач, разработка или выбор методов решения
- •Контрольные вопросы и задания
- •5. Проектирование программного обеспечения при структурном подходе
- •5.1. Разработка структурной и функциональной схем
- •5.2. Использование метода пошаговой детализации для проектирования структуры программного обеспечения
- •5.3. Структурные карты Константайна
- •5.4. Проектирование структур данных
- •5.5. Проектирование программного обеспечения, основанное на декомпозиции данных
- •5.6. Case-технологии, основанные на структурных методологиях анализа и проектирования
- •Контрольные вопросы и задания
- •6. Анализ требований и определение спецификаций программного обеспечения при объектном подходе
- •6.2. Определение «вариантов использования»
- •Типичный ход событий (окончание)
- •Альтернатива
- •6.3. Построение концептуальной модели предметной области
- •6.4. Описание поведения. Системные события и операции
- •Контрольные вопросы и задания
- •7. Проектирование программного обеспечения при объектном подходе
- •7.1. Разработка структуры программного обеспечения при объектном подходе
- •7.2. Определение отношений между объектами
- •7.3. Уточнение отношений классов
- •7.4. Проектирование классов
- •7.5. Компоновка программных компонентов
- •7.6. Проектирование размещения программных компонентов для распределенных программных систем
- •7.7. Особенность спиральной модели разработки. Реорганизация проекта
- •Контрольные вопросы и задания
- •8. Разработка пользовательских интерфейсов
- •8.1. Типы пользовательских интерфейсов и этапы их разработки
- •8.2. Психофизические особенности человека, связанные с восприятием, запоминанием и обработкой информации
- •8.3. Пользовательская и программная модели интерфейса
- •8.4. Классификации диалогов и общие принципы их разработки
- •8.5. Основные компоненты графических пользовательских интерфейсов
- •8.6. Реализация диалогов в графическом пользовательском интерфейсе
- •8.7. Пользовательские интерфейсы прямого манипулирования и их проектирование
- •8.8. Интеллектуальные элементы пользовательских интерфейсов
- •Контрольные вопросы и задания
- •9. Тестирование программных продуктов
- •9.1. Виды контроля качества разрабатываемого программного обеспечения
- •9.2. Ручной контроль программного обеспечения
- •9.3. Структурное тестирование
- •9.4. Функциональное тестирование
- •9.5. Тестирования модулей и комплексное тестирование
- •9.6. Оценочное тестирование
- •Контрольные вопросы и задания
- •10. Отладка программного обеспечения
- •10.1. Классификация ошибок
- •10.2. Методы отладки программного обеспечения
- •10.3. Методы и средства получения дополнительной информации
- •10.4. Общая методика отладки программного обеспечения
- •Контрольные вопросы
- •11. Составление программной документации
- •11.1. Виды программных документов
- •11.2. Пояснительная записка
9.3. Структурное тестирование
Структурное тестированиеназывают также тестированием по «маршрутам», так как в этом случае тестовые наборы формируют путем анализа маршрутов, предусмотренных алгоритмом. Под маршрутами при этом понимают последовательности операторов программы, которые выполняются при конкретном варианте исходных данных.
В основе структурного тестирования лежит концепция максимально полного тестирования всех маршрутов программы. Так, если алгоритм программы включает ветвление, то при одном наборе исходных данных может быть выполнена последовательность операторов, реализующая действия, которые предусматривает одна ветвь, а при втором - другая. Соответственно, для программы будут существовать маршруты, различающиеся выбранным при ветвлении вариантом.
Считают, что программа проверена полностью, если с помощью тестов удается осуществить выполнение программы по всем возможным маршрутам передач управления. Однако нетрудно видеть, что даже в программе среднего уровня сложности число неповторяющихся маршрутов может быть очень велико, и, следовательно, полное или исчерпывающеетестирование маршрутов, как правило, невозможно.
Структурный подход к тестированию имеет ряд недостатков. Так тестовые наборы, построенные по данной стратегии:
не обнаруживают пропущенных маршрутов;
не обнаруживают ошибок, зависящих от обрабатываемых данных, например, в операторе if(a-b) <eps- пропуск функции абсолютного значенияabsпроявится только, еслиa<b;
не дают гарантии, что программа правильна, например, если вместо сортировки по убыванию реализована сортировка по возрастанию.
Для формирования тестов программу представляют в виде графа, вершины которого соответствуют операторам программы, а дуги представляют возможные варианты передачи управления. Ниже приведен текст программы, которая определяет значение х в зависимости от значений параметров процедуры. Алгоритм этой программы представлен на рис. 9.2, а, а соответствующий граф передач управления - на рис. 9.2, б.
Procedure m (a, b:real; var x:real)
begin
if (a>1) and (b=0) then x:=x/a;
if (a=2) or (x>1) then x:=x+1;
end;
Формирование тестовых наборов для тестирования маршрутов может осуществляться по нескольким критериям:
покрытие операторов;
покрытие решений (переходов);
покрытие условий;
покрытие решений/условий;
комбинаторное покрытие условий.
Покрытие операторов.Критерий покрытия операторов подразумевает такой подбор тестов, чтобы каждый оператор программы выполнялся, по крайней мере, один раз. Это необходимое, но недостаточное условие для приемлемого тестирования. Поясним сказанное примером.
Для фрагмента, алгоритм и граф которого представлены на рис. 9.2, можно было бы выполнить каждый оператор один раз, задав в качестве входных данных а = 2, b= 0, х = 3. Но при этом из второго условия следует, что переменная х может принимать любое значение, и в некоторых версиях языкаPascalэто значение проверяться не будет (!).
Кроме того:
если при написании программы в первом условии указано: (а > 1) ог (b= 0), то ошибка обнаружена не будет;
если во втором условии вместо х > 1 записано х > 0, то эта ошибка тоже не будет обнаружена;
существует путь 1-2-4-6 (см. рис. 9.2, б), в котором х вообще не меняется и, если здесь есть ошибка, она не будет обнаружена.
Таким образом, хотя при тестировании действительно необходимо задавать исходные данные так, чтобы все операторы программы были выполнены хотя бы один раз, для проверки программы этого явно недостаточно.
Покрытие решений (переходов).Для реализации этого критерия необходимо такое количество и состав тестов, чтобы результат проверки каждого условия (т.е. решение) принимал значения «истина» или «ложь», по крайней мере, один раз.
Нетрудно видеть, что критерий покрытия решений удовлетворяет критерию покрытия операторов, но является более «сильным».
Программу, алгоритм которой представлен на рис. 9.2, а, можно протестировать по методу покрытия решений двумя тестами, покрывающими либо пути: 1-2-4-6, 1-2-3-4-5-6, либо пути: 1-2-3-4-6, 1-2-4-5-6, например:
а = 3, b= 0, х = 3 — путь 1-2-3-4-5-6;
а = 2, b= 1, х = 1 — путь 1-2-4-6.
Однако путь, где х не меняется, будет проверен с вероятностью 50 %: если во втором условии вместо условия х > 1 записано х < 1, то этими двумя тестами ошибка обнаружена не будет.
Покрытие условий.Критерий покрытия условий является еще более «сильным» по сравнению с предыдущими. В этом случае формируют некоторое количество тестов, достаточное для того, чтобы все возможные результаты каждого условия в решении были выполнены, по крайней мере, один раз.
Однако, как и в случае покрытия решений, этот критерий не всегда приводит к выполнению каждого оператора, по крайней мере, один раз. К критерию требуется дополнение, заключающееся в том, что каждой точке входа управление должно быть передано, по крайней мере, один раз.
Программа, алгоритм которой представлен на рис. 9.2, а, проверяет четыре условия:
1) а>1; 2) b= 0; 3) а = 2; 4)х> 1.
Необходимо реализовать все возможные ситуации:
а>1,а≤1, b=0,b≠0, а = 2, а≠2, х>1,x≤1.
Тесты, удовлетворяющие этому условию:
а = 2, b= 0, х = 4 — путь 1-2-3-4-5-6, условия: 1 - да, 2 - да, 3 - да, 4 - да;
а = 1, b= 1, х = 1 — путь 1-2-4-6, условия: 1 - нет, 2 - нет, 3 - нет, 4 - нет.
Критерий покрытия условий часто удовлетворяет критерию покрытия решений, но не всегда. Тесты критерия покрытия условий для ранее рассмотренных примеров покрывают результаты всех решений, но это случайное совпадение. Например, тесты:
а = 1, b= 0, х = 3 — путь 1-2-3-6, условия: 1 - нет, 2 - да, 3 - нет, 4 - да;
а = 2, b= 1, х = 1 — путь 1-2-3-4-5-6, условия: 1 - да, 2 - нет, 3 - да, 4 – нет
покрывают результаты всех условий, но только два из четырех результатов решений: не выполняется результат «истина» первого решения и результат «ложь» второго.
Основной недостаток метода - недостаточная чувствительность к ошибкам в логических выражениях.
Покрытие решений/условий.Согласно этому методу тесты должны составляться так, чтобы, по крайней мере, один раз выполнились все возможные результаты каждого условия и все результаты каждого решения, и каждому оператору управление передавалось, по крайней мере, один раз.
Анализ, проведенный выше, показывает, что этому критерию удовлетворяют тесты:
а = 2, b= 0, х = 4 — путь 1-2-3-4-5-6, условия: 1 - да, 2 - да, 3 - да, 4 - да;
а = 1, b= 1, х = 1 — путь 1-2-4-6, условия; 1 - нет, 2 - нет, 3 - нет. 4 - нет.
Комбинаторное покрытие условий.Этот критерий требует создания такого множества тестов, чтобы все возможные комбинации результатов условий в каждом решении и все операторы выполнялись, по крайней мере, один раз.
Для программы, алгоритм которой представлен на рис. 9.1, необходимо покрыть тестами восемь комбинаций:
1) a > 1, b =0; 2) a > 1, b ≠ 0; 3) a ≤ 1, b = 0; 4) a ≤ 1; b ≠ 0; |
5) a = 2, x > 1; 6) a = 2, x ≤ 1; 7) a ≠ 2, x > 1 8) a ≠ 2, x ≤ 1 |
Эти комбинации можно проверить четырьмя тестами:
а = 2, b= 0, х = 4 — проверяет комбинации (1), (5);
а = 2, b= 1, х = 1 — проверяет комбинации (2), (6);
а = 1, b= 0, х = 2 — проверяет комбинации (3), (7);
а = 1, b= 1, х = 1 — проверяет комбинации (4), (8).
В данном случае то, что четырем тестам соответствует четыре пути, является совпадением. Представленные тесты не покрывают всех путей, например, acd. Поэтому иногда необходима реализация восьми тестов.
Таким образом, для программ, содержащих только одно условие на каждое решение, минимальным является набор тестов, который проверяет все результаты каждого решения и передает управление каждому оператору, по крайней мере, один раз.
Для программ, содержащих вычисления, каждое из которых требует проверки более чем одного условия, минимальный набор тестов должен:
генерировать все возможные комбинации результатов проверок условий для каждого вычисления;
передавать управление каждому оператору, по крайней мере, один раз.
Термин «возможных» употреблен здесь потому, что некоторые комбинации условий могут быть нереализуемы. Например, для комбинации к < 0 и к > 40 задать к невозможно.