
- •Оглавление
- •9. Тестирование программных продуктов …………………..263
- •10. Отладка программного обеспечения …………………..287
- •11.Составление программной документации …………………..300
- •Предисловие
- •Введение
- •1. Технология программирования. Основные понятия и подходы
- •1.1. Технология программирования и основные этапы ее развития
- •1.2. Проблемы разработки сложных программных систем
- •1.3. Блочно-иерархический подход к созданию сложных систем
- •1.4. Жизненный цикл и этапы разработки программного обеспечения
- •1.5. Эволюция моделей жизненного цикла программного обеспечения
- •1.6. Ускорение разработки программного обеспечения. Технология rad
- •1.7. Оценка качества процессов создания программного обеспечения
- •Контрольные вопросы
- •2. Приемы обеспечения технологичности программных продуктов
- •2.1. Понятие технологичности программного обеспечения
- •2.2. Модули и их свойства
- •2.3. Нисходящая и восходящая разработка программного обеспечения
- •2.5. Стиль оформления программы
- •2.6. Эффективность и технологичность
- •2.7. Программирование «с защитой от ошибок»
- •2.8. Сквозной структурный контроль
- •Контрольные вопросы и задания
- •3. Определение требований к программному обеспечению и исходных данных для его проектирования
- •3.1. Классификация программных продуктов по функциональному признаку
- •3.2. Основные эксплуатационные требования к программным продуктам
- •3.3. Предпроектные исследования предметной области
- •3.4. Разработка технического задания
- •1.Введение
- •2. Основание для разработки
- •3. Назначение
- •4. Требования к программе или программному изделию
- •5. Требования к программной документации
- •4. Требования к программе или программному изделию
- •5. Требования к программной документации
- •1. Введение
- •2. Основание для разработки
- •3. Назначение
- •4. Требования к программе или программному изделию
- •5. Требования к программной документации
- •3.5. Принципиальные решения начальных этапов проектирования
- •Контрольные вопросы и задания
- •4. Анализ требований и определение спецификаций программного обеспечения при структурном подходе
- •4.1. Спецификации программного обеспечения при структурном подходе
- •4.2. Диаграммы переходов состояний
- •4.3. Функциональные диаграммы
- •4.4. Диаграммы потоков данных
- •4.5. Структуры данных и диаграммы отношений компонентов данных
- •4.6. Математические модели задач, разработка или выбор методов решения
- •Контрольные вопросы и задания
- •5. Проектирование программного обеспечения при структурном подходе
- •5.1. Разработка структурной и функциональной схем
- •5.2. Использование метода пошаговой детализации для проектирования структуры программного обеспечения
- •5.3. Структурные карты Константайна
- •5.4. Проектирование структур данных
- •5.5. Проектирование программного обеспечения, основанное на декомпозиции данных
- •5.6. Case-технологии, основанные на структурных методологиях анализа и проектирования
- •Контрольные вопросы и задания
- •6. Анализ требований и определение спецификаций программного обеспечения при объектном подходе
- •6.2. Определение «вариантов использования»
- •Типичный ход событий (окончание)
- •Альтернатива
- •6.3. Построение концептуальной модели предметной области
- •6.4. Описание поведения. Системные события и операции
- •Контрольные вопросы и задания
- •7. Проектирование программного обеспечения при объектном подходе
- •7.1. Разработка структуры программного обеспечения при объектном подходе
- •7.2. Определение отношений между объектами
- •7.3. Уточнение отношений классов
- •7.4. Проектирование классов
- •7.5. Компоновка программных компонентов
- •7.6. Проектирование размещения программных компонентов для распределенных программных систем
- •7.7. Особенность спиральной модели разработки. Реорганизация проекта
- •Контрольные вопросы и задания
- •8. Разработка пользовательских интерфейсов
- •8.1. Типы пользовательских интерфейсов и этапы их разработки
- •8.2. Психофизические особенности человека, связанные с восприятием, запоминанием и обработкой информации
- •8.3. Пользовательская и программная модели интерфейса
- •8.4. Классификации диалогов и общие принципы их разработки
- •8.5. Основные компоненты графических пользовательских интерфейсов
- •8.6. Реализация диалогов в графическом пользовательском интерфейсе
- •8.7. Пользовательские интерфейсы прямого манипулирования и их проектирование
- •8.8. Интеллектуальные элементы пользовательских интерфейсов
- •Контрольные вопросы и задания
- •9. Тестирование программных продуктов
- •9.1. Виды контроля качества разрабатываемого программного обеспечения
- •9.2. Ручной контроль программного обеспечения
- •9.3. Структурное тестирование
- •9.4. Функциональное тестирование
- •9.5. Тестирования модулей и комплексное тестирование
- •9.6. Оценочное тестирование
- •Контрольные вопросы и задания
- •10. Отладка программного обеспечения
- •10.1. Классификация ошибок
- •10.2. Методы отладки программного обеспечения
- •10.3. Методы и средства получения дополнительной информации
- •10.4. Общая методика отладки программного обеспечения
- •Контрольные вопросы
- •11. Составление программной документации
- •11.1. Виды программных документов
- •11.2. Пояснительная записка
2.6. Эффективность и технологичность
Традиционно эффективными считают программы, требующие минимального времени выполнения и/или минимального объема оперативной памяти. Особые требования к эффективности программного обеспечения предъявляют при наличии ограничений (на время реакции системы, на объем оперативной памяти и т.п.). В случаях, когда обеспечение эффективности не требует серьезных временных и трудовых затрат, а также не приводит к существенному ухудшению технологических свойств, необходимо это требование иметь в виду.
Разумный подход к обеспечению эффективности разрабатываемого программного обеспечения состоит в том, чтобы в первую очередь оптимизировать те фрагменты программы, которые существенно влияют на характеристики эффективности. Для уменьшения времени выполнения некоторой программы в первую очередь следует проанализировать циклические фрагменты с большим количеством повторений: экономия времени выполнения одной итерации цикла будет умножена на количество итераций.
Не следует забывать и о том, что многие способы снижения временных затрат приводят к увеличению емкостных и, наоборот, уменьшение объема памяти может потребовать дополнительного времени на обработку.
И тем более не следует «платить» за увеличение эффективности снижением технологичности разрабатываемого программного обеспечения. Исключения возможны лишь при очень жестких требованиях и наличии соответствующего контроля за качеством.
Частично проблему эффективности программ решают за программиста компиляторы. Средства оптимизации, используемые компиляторами, делят на две группы:
машинно-зависимые, т. е. ориентированные на конкретный машинный язык, выполняют оптимизацию кодов на уровне машинных команд, например, исключение лишних пересылок, использование более эффективных команд и т.п.;
машинно-независимые выполняют оптимизацию на уровне входного языка, например, вынесение вычислений константных (независящих от индекса цикла) выражений из циклов и т.п.
Естественно, нельзя вмешаться в работу компилятора, но существует много возможностей оптимизации программы на уровне команд.
Способы экономии памяти. Принятие мер по экономии памяти предполагает, что в каких-то случаях эта память неэкономно использовалась. Учитывая, что анализировать имеет смысл только операции размещения данных, существенно влияющие на характеристику эффективности, следует обращать особое внимание на выделение памяти под данные структурных типов (массивов, записей, объектов и т.п.). Прежде всего при наличии ограничений на использование памяти следует выбирать алгоритмы обработки, не требующие дублирования исходных данных структурных типов в процессе обработки. Примером могут служить алгоритмы сортировки массивов, выполняющие операцию в заданном массиве, например, хорошо известная сортировка методом «пузырька».
Если в программе необходимы большие массивы, используемые ограниченное время, то их можно размещать в динамической памяти и удалять при завершении обработки.
Также следует помнить, что при передаче структурных данных в подпрограмму «по значению» копии этих данных размещаются в стеке. Избежать копирования иногда удается, если передавать данные «по ссылке», но как неизменяемые (описанные const). В последнем случае в стеке размещается только адрес данных, например:
Type Massiv=array[l.. 100] of real;
function Summa (f Const; a Massiv; ...)...
Способы уменьшения времени выполнения. Как уже упоминалось выше, для уменьшения времени выполнения в первую очередь необходимо анализировать циклические участки программы с большим количеством повторений. При их написании необходимо по возможности:
выносить вычисление константных, т.е. не зависящих от параметров цикла, выражений из циклов;
избегать «длинных» операций умножения и деления, заменяя их сложением, вычитанием и сдвигами:
минимизировать преобразования типов в выражениях;
оптимизировать запись условных выражений – исключать лишние проверки;
исключать многократные обращения к элементам массивов по индексам (особенно многомерных, так как при вычислении адреса элемента используются операции умножения на значение индексов) – первый раз прочитав из памяти элемент массива, следует запомнить его в скалярной переменной и использовать в нужных местах;
• избегать использования различных типов в выражении и т.п.
Рассмотрим следующие примеры.
Пример 2.2. Пусть имеется цикл следующей структуры (Pascal):
for у: =0 to 99 do
for x:=0 to 99 do
a[320*x+y]:=S[k,l];
В этом цикле операции умножения и обращения к элементу S[k] выполняются 10000 раз. Оптимизируем цикл, используя, что 320 = 28 + 26:
skl:=S[k,l]; {выносим обращение к элементу массива из цикла}
for x:=0 to 99 do {меняем циклы местами}
begin
i: =х skl 8+x skl 6; {умножение заменяем на сдвиги и выносим из цикла}
for y:=0 to 99 do a[i+y]: =skl;
end; ...
В результате вместо 10000 операций умножения будут выполняться 200 операций сдвига, а их время приблизительно сравнимо со временем выполнения операции сложения. Обращение к элементу массива S[k] будет выполнено один раз.
Пример 2.3. Пусть имеется цикл, в теле которого реализовано сложное условие:
for k: =2 to n do
begin
if x[k]>yk then S:=S+y[k]-x[k];
if (x[k]<=yk) and (y[k]<yk) then S:=S+yk-x[k];
end;...
В этом цикле можно убрать лишние проверки:
for к: =2 to n do begin
if x[k]>yk then S:=S+y[k]-x[k] else
if y[k]<yk then S:=S+yk-x[k];
end;...
Обратите внимание на то, что в примере 2.2 понять, что делает программа, стало сложнее, а в примере 2.3 – практически нет. Следовательно, оптимизация, выполненная в первом случае, может ухудшить технологичность программы, а потому не очень желательна.