книги / Сборник задач по технологии и технике нефтедобычи
..pdfрактер ее распределения в потоке смеси, позволяют представить зависимость для истинной объемной доли газа <рг в следующем виде:
Фг = Рг/[1 + (K’S/^CM)] — Крж/(Рж — Pi),  | 
	(5.59)  | 
где рг — расходная объемная доля газа в смеси  | 
	
  | 
Рг =■ И>Гпр/^см'*  | 
	(5.60)  | 
К — параметр, характеризующий распределение жидкости в раз личных элементах потока смеси (газовых пробках, жидкостных перемычках, пленках, обволакивающих газовые пробки).
Значения параметра коррелировались по скорости смеси (писм), диаметру трубы DT и вязкости жидкости рж. Общий вид корреля ционных зависимостей с учетом природы жидкости следующий:
жидкая фаза—вода
  | 
	^  | 
	= а[ ^ Р ж/ ° г  | 
	+ a2]^ w cu + a3 lgDT + а4;  | 
	
  | 
	(5.61)  | 
|||
  | 
	жидкая  | 
	фаза—нефть  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
  | 
	
  | 
	= a , l g ( n * +  | 
	0 / D ? a 2 ,g “'cM +  | 
	a3 | g £>T + a 4 + aS-  | 
	(5-62)  | 
|||
где alt  | 
	, a5;  | 
	n — соответственно коэффициенты  | 
	и показатель  | 
|||||
степени, значения которых  | 
	приведены в  | 
	табл. 5.5.  | 
	
  | 
|||||
Т а б л и ц а  | 
	5.5 Коэффициенты  | 
	а,- и показатель  | 
	степени п  | 
	для уравнений  | 
||||
(5.61)  | 
	и (5.62)  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
*2  | 
	0  | 
	п  | 
	
  | 
	а2  | 
	“ 3  | 
	О^  | 
	Предельные значения  | 
|
  | 
	Аб  | 
	параметра  | 
||||||
а  | 
	s  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
Жидкая фаза — вода
< 3  | 
	1,38  | 
	0,0025  | 
	0,232  | 
	—0,428  | 
	—0,7821  | 
	—  | 
> 3  | 
	0,799  | 
	0,0174  | 
	—0,162  | 
	—0,888  | 
	— 1,2508  | 
	—  | 
Жидкая фаза — нефть  | 
	
  | 
	
  | 
	
  | 
|||
< 3  | 
	1,415  | 
	0,0024  | 
	0,167  | 
	0,113  | 
	—0,1395  | 
	—  | 
> 3  | 
	1,371  | 
	0,0054  | 
	—  | 
	0,569  | 
	0,455  | 
	*  | 
  | 
||||||
К^ —0,213'Шсм
у^ ---Ws (1 --- Рсм/рж)
Wcu + Ws
К> -0,213 -и ;с„
у^ —B7j(l — рсм/рж)
Шсм + Ws
* а5 = -(0,516 + lg шсм) [0,0015 lg (цж + 1 ) / С ['571 + 0,63 lg £>т + 0,722].
Относительная скорость движения газовых пузырей (пробок) определяется следующим образом:
ws = сгс2 \ ^ gDT > м/с,  | 
	(5.63)  | 
где — коэффициент для случая движения газовой пробки в не подвижной жидкости и являющийся функцией числа Рейнольдса пробки (рис. 5.9)
Re„ - ш5£>трж/рЖ )  | 
	(5.64  | 
121
ю 20 JO oo soRe,
Рис. 5.9. График зависимости Ct от Ren [ 19 ]
  | 
	0 >  | 
	!  | 
  | 
	/ 1  | 
|
>  | 
	1  | 
|
/  | 
	
  | 
|
-------------4  | 
	\  | 
	
  | 
U r'  | 
	
  | 
|
  | 
	^  | 
	
  | 
  | 
	^ ^ T g o o i l  | 
|
  | 
	^  | 
	[  | 
  | 
	|  | 
	|  | 
о woo 2000M O W oiaw ы т m im „
Рис. 5.10. График зависимости С2 от Re* и Ren [19]
с2 — коэффициент для случая движения газовой пробки в движу щейся жидкости и являющийся функцией числа Рейнольдса пробки и числа Рейнольдса жидкости при скорости движения ее, равной скорости смеси (рис. 5.10) шж = wCM
Re* = и^смОтРж/рж-  | 
	(5.65)  | 
Приведенные зависимости для коэффициентов cL и с2 позволяют рассчитать ws итерационным методом. Для полностью развитой пробковой структуры можно принять сг = 0,35.
Если число Рейнольдса жидкости больше предельного значе ния, т. е. Re*>6000, то ws можно определить методом экстрапо ляции с использованием уравнений:
если  | 
	Ren=g;3000,  | 
	то  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
='(0,546 +  | 
	
  | 
	8,74-10-е Rеж) ] / gDT . м/с.  | 
	
  | 
	(5.66)  | 
||||
если  | 
	3000 <  | 
	Ren < 8000,  | 
	то сначала определяется  | 
	
  | 
||||
ais0 =  | 
	(0,251 +  | 
	8,74-10~« Re*) V g£>7>  | 
	м/с’  | 
	а затем  | 
	(5.67)  | 
|||
  | 
	>.5 («SO + V ^SO +  | 
	11 ■>7йж/(рж Ф1) ) ’ м/с,  | 
	(5.68)  | 
|||||
если  | 
	wn  | 
	8000,  | 
	то  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
ws — (0,35 1 8,74-10~° Re*) V gDT . м/с,  | 
	
  | 
	(5.69)  | 
||||||
где рж — мПа с; рж — кг/м3; Dr — м.  | 
	определяют по  | 
	(5.39), а  | 
||||||
Плотность  | 
	газожидкостной смеси  | 
	рсм  | 
||||||
градиент потерь на трение по уравнению для однофазного потока, движущегося со скоростью, равной приведенной скорости смеси
(ф/<Ш)тр = Яш2мрсмЮ -6/(?От), МПа/м,  | 
	(5.70)  | 
где X — коэффициент гидравлического сопротивления потока жид кости, движущейся со скоростью wM = wCM, определяется в за висимости от числа Re* и относительной шероховатости e/DT по диаграмме (см. рис. 5.3) или по (5.22).
122
П е р е х о д н а я с т р у к т у р а . Определение плотности смеси и градиента потерь на трение ориентировочно определяют по
формулам средневзвешенного распределения  | 
	[19]  | 
	
  | 
Рем = (аУгб п —®гб) Рем np/(f»r6n—Н»гб сЖ ^гб—»гб с)'Рем Л®гб п—^гбс).  | 
||
  | 
	
  | 
	(5.71)  | 
(dpldH)rр = (twГб П — wr6) (dp/dH)Tp np/(«Jr 6 П — Шгб с) + (Югб — Югб с) х  | 
||
X (dpIdH)тр к/(^гб п — ®гб с).  | 
	
  | 
	(5-72)  | 
где рем пР* Рем в — соответственно плотности  | 
	смеси  | 
	пробковой и  | 
кольцевой структур потока; (dP/dH)rрПр1 (dp/dH)трк  | 
	соответст  | 
|
венно градиенты потерь на трение пробковой и кольцевой структур
потока.
К о л ь ц е в а я с т р у к т у р а . Ввиду непрерывности и боль ших скоростей газовой фазы, поток которой содержит диспергиро ванные капли жидкости, допускается, что относительная скорость пренебрежимо мала (ws -> 0), в силу чего плотность смеси опреде ляется по формуле
Рем = Рж (1 --Рг) + РгРп  | 
	(5.73)  | 
градиент потерь на трение — по уравнению для  | 
	однофазного по  | 
тока  | 
	
  | 
(dpldH)rp = W r npPr10-6 /(2DT), МПа/M,  | 
	(5.74)  | 
где wrпр — приведенная скорость газа, м/с;  | 
	X — коэффициент  | 
гидравлического сопротивления потока газа, определяющийся в за висимости от числа Рейнольдса для потока газа
Rep = Wr пр^тРг/рг*  | 
	(5.75^  | 
и относительной шероховатости  | 
	(волнистости) пленки  | 
	жидкости  | 
||||
на стенке трубы e/DT по диаграмме (см. рис. 5.3) или по (5.22).  | 
||||||
Относительная шероховатость  | 
	пленки жидкости  | 
	определяется  | 
||||
в зависимости от безразмерного параметра Мж  | 
	
  | 
	
  | 
||||
Л^ж =  | 
	(РжШг пр/Пнг)2 (Рг/рж),  | 
	
  | 
	
  | 
	(5.76)  | 
||
если  | 
	Л ^О .О О б,  | 
	то  | 
	e/DT=  | 
	34анг/(ргГ>тш2 пр).  | 
	
  | 
	(5-77)  | 
если  | 
	Ыж> 0,005,  | 
	то  | 
	e/DT=  | 
	17418ангЛ'^302/(ргР Х  | 
	пр).  | 
	(5.78)  | 
где стнг — Н/м; рг — кг/м3; wrпр — м/с;  | 
	DT — м.  | 
|
Если e/DT> 0,05, что возможно на  | 
	ранней  | 
	стадии развития  | 
кольцевой структуры, X определяют по формуле,  | 
	полученной в ре  | 
|
зультате экстраполяции диаграммы (см. рис. 5.3)  | 
||
X = l/(4[lg(0,27e/D T)]2) + 0,268(е/О т)''73  | 
	
  | 
	(5 .7 9 )  | 
Для Уточнения величины градиента потерь на трение рекомен дуется [30] в (5.75) заменить DT на (£)т — 2е), а а>гпр на
WrnpDV{DT ~ ^ y .
123
Общий градиент давления в точке или сечении колонны подъем ных труб с учетом потерь, вызванных ускорением, для любой струк турной формы газожидкостного потока определяется из следую щего выражения:
dp/dH = (fpCMg + (dp/dH)iр]/[1 — GCMV\10-6/(Pp)]] 10-«, МПа/м,  | 
	(5.80)  | 
где р — давление в рассматриваемой точке (сечении) трубы, МПа;
Vr — объемный расход газа при соответствующих р и Т  | 
	[см. фор  | 
|||||||||||
мулу  | 
	(5.18)1, м3/с; Go, — массовый  | 
	расход смеси  | 
	[см. формулу  | 
|||||||||
(5.2)1, кг/с.  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
З а д а ч а  | 
	5.3.  | 
	Определить расчетным путем (используя метод  | 
||||||||||
Оркишевского) давление на устье фонтанной скважины  | 
	при сле  | 
|||||||||||
дующих  | 
	исходных  | 
	данных:  | 
	<2ЖСТ =  | 
	450 м3/сут,  | 
	рнд =  | 
	845  | 
	кг/м3,  | 
|||||
Рааб = 25  | 
	МПа, рг0 = 1,017  | 
	кг/м3,  | 
	Тпл =  | 
	344 К, рнд = 23  | 
	мПа-с,  | 
|||||||
со =  | 
	0,0211  | 
	К/м,  | 
	рнпл = 2,2  | 
	мПа-с, Lc =  | 
	3200  | 
	м,  | 
	6НпЛ =  | 
	1,156,  | 
||||
DT =  | 
	0,0635  | 
	м, Г = 60 м3/м3,  | 
	рв =  | 
	0, Рнас = 8  | 
	МПа.  | 
	
  | 
	
  | 
|||||
Задача решается путем расчета кривой распределения давления по принципу «снизу—вверх» в последовательности, аналогичной решению задачи 5.1.
МЕТОД ВНИИ ГАЗА
Основой метода являются результаты теоретических и экспери ментальных исследований движения газожидкостных смесей, про веденных В. А. Мамаевым, О. В. Клапчуком и др. во Всесоюзном научно-исследовательском институте природных газов [4, 71.
Метод расчета позволяет определить гидродинамические пара метры газожидкостного потока двух предельных структурных форм, пробковой и кольцевой, возможных при определенных условиях эксплуатации как нефтяных, так и газовых скважин, в продукции которых содержится жидкая фаза. Причем под пробковой структу рой понимается структура, характеризующаяся дискретным рас пределением газа в смеси (собственно^пузырьковая и пробковая структуры). Вторая предельная структура—кольцевая — характе ризуется непрерывностью газовой фазы, когда ее движение приоб ретает струйный характер.
Определение структуры потока
Структурная форма обусловлена соотношением гравитационных и инерционных сил, действующих в потоке. Так, для пробковой структуры определяющими являются гравитационные силы, для кольцевой — как гравитационные, так и инерционные, преобла дающий характер которых зависит от стадии развития структуры. В качестве математической и физической характеристики проявле ния этих сил используют критерии Рейнольдса и Фруда или их комбинации, в силу чего критерием, определяющим область те чения потока смеси соответствующей структуры, является безраз мерный параметр
W = [RerFrCMpr/(P]K - р,.)]1 3,  | 
	(5.81)  | 
124
где Rer — критерий Рейнольдса потока газовой фазы при скорости ее течения, равной скорости смеси (wT = досм).
Rer = шсм°тРг/»1г-  | 
	(5-82)  | 
в технологических расчетах можно принять pr s  | 
	0,020 мПа-с;  | 
Fro, — критерий Фруда смеси  | 
	
  | 
FrCM=  | 
	(5.83)  | 
Границу зоны пробковой структуры и начала кольцевой с уче том физических и расходных параметров жидкости и газа опреде ляют следующим выражением:
Г гр = [8.2 - 1 ,7 - К Г 20 г/р ж)"° -6] ехр [(8 + 62рг/р ж)(1 - рг)], (5.84)
где рг и рж — соответственно вязкость газовой и жидкой фаз при соответствующих термодинамических условиях потока.
На основании соотношения между W и (Ггр структура потока:
пробковая,  | 
	если  | 
	
  | 
	(5.85)  | 
кольцевая,  | 
	если  | 
	W > lFrp.  | 
	(5.86)  | 
Плотность и градиент потерь на трение потока смеси
П р о б к о в а я с т р у к т у р а . Предварительно определяют истинную объемную долю газа в смеси <рг по формуле, полученной на основании критериальной отработки экспериментальных дан ных
фг = Apt С1.0 ехр ( — 4,4 Frc„/Fra ] Рг,  | 
	(5.87)  | 
где kц — коэффициент, учитывающий влияние вязкостей  | 
	фаз, и  | 
|||
в зависимости от их соотношения определяются  | 
	
  | 
|||
^ =  | 
	0 ,3 5 + 1 .4 / Рг/Рж ,  | 
	если  | 
	р,г/р,ж <0,01;  | 
	(5.88)  | 
*ц =  | 
	0,77 + 0,23т/~рг/Цж.  | 
	если  | 
	рг/цж > 0,01.  | 
	(5.89)  | 
Fra — число Фруда смеси, соответствующее области автомодель ного режима течения, т. е. режима, при котором отношение срг/рг не зависит от FrCM. ь
В зависимости от отношения вязкостей фаз Fra определяется следующими выражениями:
Fra =1150 (рг/р ж) 0,79,  | 
	если  | 
	цг/р ж < 0,001,  | 
	(5.90)  | 
Fra = 9,8 (р г/р ж) 0,1,  | 
	если  | 
	рг/р ж > 0,001.  | 
	(5.91)  | 
Плотность смеси с учетом истинных объемных долей фаз и их плотностей определяют по следующему выражению:
Рем = ржг(1 — Фг) + Ргфг, кг/м3.  | 
	(5.92)  | 
Градиент потерь на трение определяют на основе коэффициента гидравлического сопротивления и истинного динамического напора потока смеси.^Коэффициент гидравлического сопротивления рас-
125
считывают по зависимости, впервые полученной на основе интег рирования профиля скорости с учетом экспериментально опреде ленного масштаба пути перемешивания
Хсм=  | 
	3 1 = ¥ - У в  | 
	7 8 (1 -р г)а  | 
	\  | 
||||
  | 
	Re*  | 
	/ +  | 
|||||
  | 
	}  | 
	1 — Рг  | 
	
  | 
	
  | 
|||
+ 0,65]} -2,  | 
	
  | 
	
  | 
	
  | 
	
  | 
	(5.93)  | 
||
где e/DT— относительная  | 
	шероховатость стенок  | 
	(см. табл. 5.1);  | 
|||||
Re* — критерий Рейнольдса потока жидкости,  | 
	движущегося со  | 
||||||
скоростью, равной скорости смеси (wx = wCM),  | 
	
  | 
	
  | 
|||||
Re* ■—^смРтрж/рж‘,  | 
	
  | 
	
  | 
	(5.94)  | 
||||
А =  | 
	(1 — фг) р»  | 
	[«•'б(-Ь4 г)!+3<^  | 
	1 — Рг  | 
	
  | 
|||
  | 
	
  | 
	Рем  | 
	
  | 
	1 — Фг  | 
	
  | 
||
4- -5 ^ 0 ,1 6  | 
	( W  | 
	
  | 
	
  | 
	(5.95)  | 
|||
Рем  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||
в =  | 
	Рем  | 
	L  | 
	1 —■фг  | 
	Фг J  | 
	
  | 
	(5.96)  | 
|
  | 
	
  | 
	
  | 
|||||
При отсутствии свободного газа в потоке, что в условиях сква жины возможно при р > р„ас (Рг = 0- Л = 0,16, В = 1), фор мула (5.93) принимает вид, аналогичный зависимостям, исполь зуемым в гидродинамике однофазных потоков
Я = (3 -2 [lg (2 e /D T + 78/Re*) + 0,65]}-2.  | 
	(5 97)  | 
Выражение для градиента потерь на трение согласно (5.1) в виде, удобном для его вычисления, будет
/  | 
	dp  | 
	\ _^  | 
	т см  | 
	Г Р  | 
	Рг) Рж  | 
	—  | 
	Рг 10-*, МПа/м.  | 
	(5.98)  | 
  | 
	
  | 
	)тр  | 
	2DT  | 
	L  | 
	(1 — фг)  | 
|||
\  | 
	d H  | 
	Фг  | 
	J  | 
	
  | 
К о л ь ц е в а я с т р у к т у р а . Учитывая непрерывность га зовой фазы, для определения плотности смеси необходимо знать истинное объемное содержание жидкости <р* в потоке кольцевой структуры. Особенность данной структуры — сложный характер изменения фж, обусловленный тем, что слой жидкости, состоящий из пристенного ламинарного подслоя и внешней области, для ко торой характерно сильное волнообразование, находится под дейст вием гравитационных и инерционных сил, соотношение между ко торыми определяет направление движения жидкости и соответст венно ее распределение в потоке. Жидкость может перемещаться либо в направлении движения потока газа, либо находиться в про тивотоке и совершать перемещения пульсационного характера, типичного для барботажного режима. Скорость потока, при ко торой изменяется направление движения пленки жидкости, назы вается в гидродинамике газожидкостных смесей скоростью реверса
126
(опрокидывания), и ее характеристикой является безразмерный параметр (безразмерная скорость реверса)
Wp = “'см [(р* - РгМ ^ж г)]0,25 (Рг/Рж)0,5.  | 
	(5" )  | 
|
где стжг — поверхностное  | 
	натяжение на  | 
	границе жидкость—газ,  | 
стжг ж стнг [см. формулу  | 
	(1.39) J.  | 
	
  | 
Характеристикой сил, действующих в потоке и определяющих истинное содержание жидкости, является безразмерный параметр,
составленный из критерия Рейнольдса жидкости Иеж  | 
	[см. формулу  | 
|
(5.94)1 и критерия Фруда  | 
	смеси FrCM [см. формулу  | 
	(5.83)]  | 
= |> ж Р'см Рг/(Рж -  | 
	Рг)]‘ 3-  | 
	(5- >00)  | 
Зависимость для истинной объемной доли жидкости в потоке смеси кольцевой структуры, полученная на основе обобщения экспе риментальных данных с помощью указанных параметров, имеет вид
Ф = ( — ^ — + — рж],о_т^ Г + Фжпр (1 —10  | 
	,  | 
  | 
	(5.101)  | 
где рж — расходная объемная доля жидкости в смеси,  | 
	
  | 
Рж = (1 -- Рг) = Ож/QcMi  | 
	(5.102)  | 
— истинная объемная доля жидкости в смеси при барботаже (Рж = 0), определяемая в зависимости от параметра Wp:
<рж =  | 
	0,0053(3.3 -  | 
	Wp)/W]i3,  | 
	если  | 
	И7р < 3 ,3 ;  | 
	(5.10))  | 
|
Фж =  | 
	0,  | 
	если  | 
	tt7p > 3 , 3 ,  | 
	
  | 
	
  | 
	(5.104)  | 
фж пр — истинная  | 
	объемная  | 
	доля  | 
	жидкости в смеси  | 
	пробковой  | 
||
структуры  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
Фж пр =  | 
	1 — Фг.  | 
	
  | 
	
  | 
	
  | 
	(5.105)  | 
|
фг — соответственно истинная объемная доля газа в смеси пробко вой структуры [см. формулу (5.87)1.
Плотность смеси определяют по следующему выражению:
Рем = Ржфж + Рг 0 — Фж)-  | 
	(5.106)  | 
Коэффициент гидравлического сопротивления потока кольцевой структуры ввиду отсутствия однозначной его зависимости от числа Рейнольдса жидкости Иеж определяется комбинацией критериев Иеж и Фруда смеси FrCMи представляется в форме приведенного коэффициента сопротивления
^-см = X (R ^ : e/D-r) ф (Re» FrCM; рж),  | 
	(5.107)  | 
где X (Re*; e/DT) — коэффициент гидравлического сопротивления жидкости при wx = wCM, определяемый в зависимости от Re» по (5.94) и относительной шероховатости стенки трубы по (5.22) или по диаграмме (см. рис. 5.3); ф (Re»FrCM; рж) — приведенный Ко-
127
Рж. 5-11. Определение 'давления, развиваемого электроцентробежным по гружным насосом по расчетному профилю давления (к задаче 5.4, 5.5):
/ — профиль давления в  | 
	подъемной  | 
	колонне, рассчитанный по методике ВНИИгаза;  | 
/ ' — профиль давления,  | 
	рассчитанный по обобщенным зависимостям; 2 — профиль дав  | 
|
ления в эксплуатационной колонне;  | 
	Яд — динамический уровень  | 
|
эффициент трения, зависящий от определяющих критериев газо жидкостного потока
ф = 1,0+0,031 [ReKFrCM(рж - р г)/р г] ! 3  | 
	ехР [ - 15(Рж+ Р г/Рж)]-  | 
(5.108)
Общий градиент давления газожидкостного потока любой струк туры без учета потерь за счет ускорения определяется согласно (5.1) по следующей формуле
(dpld.H) = PcMglO-6 + (dpldH)Tр, МПа/м.  | 
	(5.109)  | 
З а д а ч а 5.4. Эксплуатационная  | 
	нефтяная скважина обору  | 
дована установкой погружного центробежного электронасоса, (УЦЭН).
Определить  | 
	при известных глубине спуска Нса и давлении  | 
на приеме рпн  | 
	давление, развиваемое насосомт р„, используя для  | 
этого расчетный профиль давления в колонне подъемных труб (НКТ), на которых насос спущен в скважину, при следующих ис ходных данных: Qx ст = 410 м3/сут, рад = 873 кг/м3, рв0 =
128
= 30 %, рв = 1172 кг/м3; ру =  | 
	2 МПа,  | 
	рг0 =  | 
	1,35 кг/м3, ;ТПЛ =  | 
|||||
=,318  | 
	К,  | 
	рнд =  | 
	86,3 мПа-с, ш  | 
	— 0,0203  | 
	К/м,  | 
	рнпл = 7,7 мПа-с,  | 
||
Рзаб =  | 
	16  | 
	МПа,  | 
	Ьнпл = 1,14, Рпн = 7  | 
	МПа, Г = 34 м3/м3,  | 
	=  | 
|||
= 1800  | 
	м,  | 
	рна1  | 
	= 5 МПа, D3K =  | 
	0,152  | 
	м, £>т  | 
	- 0,0635 м, Нев  | 
	-  | 
|
— 800 м.  | 
	
  | 
	Для решения задачи предварительно рассчитать  | 
||||||
Р е ш е н и е .  | 
||||||||
по изложенной выше методике ВНИИгаза профиль давления в НКТ начиная от устьевого сечения до сечения, соответствующего положению выкида насоса, задавшись при этом условным давле нием на выкиде рвн = 12 МПа. Так как рвв>р„ае, то расчетный профиль будет состоять из двух участков: участка с давлением при движении газоводонефтяного потока ру< р < Ряас и участка с дав лением при движении водонефтяного потока р„ас<Р < Рвя- По
следовательность расчета  | 
	профиля давления аналогична  | 
	изложен  | 
|
ной в решениях задач 5.1  | 
	и 5.2. Результат расчета представлен на  | 
||
рис.  | 
	5.11 (кривая /). Искомое давление, развиваемое  | 
	насосом,  | 
|
Ря =  | 
	Рвн — Рпн = 9,9—7,0 = 2,9 МПа.  | 
	
  | 
|
МЕТОД РАСЧЕТА ПО ОБОБЩЕННЫМ ЗАВИСИМОСТЯМ *
Широкий диапазон эксплуатационных условий и особенно вы сокая вязкость продукции нефтяных скважин ограничивают при менимость существующих методов гидродинамического расчета движения газожидкостных смесей, в силу чего возникает необхо димость обобщения как самих методик расчета, так и эксперимен тальных данных, на основе которых они получены. Надежность получаемых при этом расчетных зависимостей будет определяться правильностью выбора модели потока, достаточно полно отражаю щей его физическую сущность. Из используемых в гидродинамике моделей газожидкостного потока наиболее приемлемой является модель потока дрейфа [27], позволяющая не только проанализи ровать экспериментальные данные, но и обобщить их. С позиций этой модели при обычном способе определения основных гидроди намических параметров газожидкостного потока можно получить следующее соотношение для них:
т тк = (ДШсм + с2 V g D f  | 
	(5-ПО)  | 
где wn, — средняя истинная скорость  | 
	газовой фазы; wcu — ско  | 
рость смеси; сх; с2 — коэффициенты,  | 
	учитывающие гидродинами  | 
ческие особенности потока и физические свойства фаз.
Теория потока дрейфа позволяет исследовать движение смеси пузырьковой и пробковой структур, характеризующихся дискрет ным распределением газовой фазы и в которых гравитационные силы уравновешиваются градиентом давления и силами взаимо действия между фазами и соответственно между фазами и стенкой трубы.
* Данный метод предложен В. Г. Троном на основе проведенного им обоб щения экспериментальных данных и полученных при этом корреляцион ных зависимостей.
5 Заказ №1131  | 
	129  | 
На основе анализа зависимости скорости дрейфа* (относитель ной скорости) газовой фазы wn = юги — ы>ш от скорости смеси wCM возможную область существования пузырьковой и пробковой структур определяют скоростью смеси, изменяющейся в диапазоне wc,t = 0 —10 м/с. Данный интервал скорости смеси характерен для большинства нефтяных скважин, что позволяет использовать предлагаемый метод для решения технологических задач.
Корреляционные зависимости для су и с2, полученные на ос нове обобщения опубликованных и известных в гидродинамике газожидкостных систем экспериментальных данных, имеют вид
2.2361e°'049|i*
Cl  | 
	— 8,17-10 3M-ж®  | 
	(5.111)  | 
1 +  | 
	1,1002е°-049,1ж  | 
	
  | 
1 +0.1082е°'°49,1ж  | 
	
  | 
|
с2  | 
	- [0,1006 — 2,52-10-3 fii* — 1)1  | 
	
  | 
1 +  | 
	1,1002е0,049*Ьк  | 
	
  | 
  | 
	
  | 
	(5.112)  | 
где рж — относительная вязкость жидкости, равная отношению вязкости жидкости при заданных термодинамических условиях к вязкости воды при стандартных условиях (р.вст = 1 мПа-с)
Рж = Ржфв!  | 
	(5.113)  | 
D о = 0,015 м — наименьший диаметр по обобщаемым эксперимен тальным данным.
Учитывая различный характер влияния вязкости жидкости и диаметра трубы на истинную скорость газа при движении газожид костного потока рекомендуется применять для q выражение (5.111) при следующих диаметрах насосно-компрессорных труб, исполь зуемых для добычи нефти и газа и соответствующих им диапазонах изменения относительной вязкости жидкости:
0 Т =  | 
	0,0381 м  | 
	1 <  | 
	рж<1500;  | 
	DT = 0,0508  | 
	м  | 
	1< рж sSC750;  | 
	
  | 
Dr =  | 
	0,0635 м  | 
	1 <  | 
	(Г* < 450;  | 
	DT = 0,0762  | 
	м  | 
	1< рж < 300.  | 
	(5.114)  | 
Выражение для с2 (5.112)  | 
	может быть использовано при  | 
	отно  | 
|
сительной вязкости жидкости  | 
	1< рж < 40. Если рж >  | 
	40, то  | 
	опре  | 
делить с2 ориентировочно можно по следующей зависимости:  | 
|||
сг = ( l + 0 , 10 8 2 е°-°49'1ж^ ^ 1 +  | 
	l,1002e°t049^  | 
	
  | 
	(5.115)  | 
Истинная объемная доля газа в смеси при известных коэффи циентах q и с2 определяют следующим аналитическим выражением:
<Рг =  | 
	*= P r /( cl + с2 P C ’5)-  | 
	(5 116>  | 
*Скорость дрейфа газовой фазы — скорость газовой фазы по отношению
кусловной плоскости, нормальной к направлению течения и движущейся вдоль канала со скоростью, равной скорости смеси.
130
