Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭУМКД-МиМАПР / Electr_uchebnik_po_ТПР.doc
Скачиваний:
61
Добавлен:
12.03.2015
Размер:
2.64 Mб
Скачать

3.5. Искусственный базис

Для задачи, заданной в форме основной задачи линейного программирования, можно непосредственно указать ее опорный план, если среди векторов Pj, компонентами которых служат коэффициенты при неизвестных в системе уравнений данной задачи, имеется m единичных. Однако для многих задач линейного программирования, записанных в форме основной задачи и имеющих опорные планы, среди векторов Pjне всегда есть m единичных. Рассмотрим задачу:

Пусть требуется найти максимум функции

F=c1x1+c2x2+ … +cnxn

При условии

нет m единичных.

Задача, состоящая в определении максимального значения функции

F=c1x1+c2x2+ … +cnxn-Mxn+1-… -Mxn+m

при условии

где M – некоторое достаточно большое положительное число, конкретное значение которого обычно не задается, называется расширенной задачей по отношению к основной задаче.

Расширенная задача имеет опорный план определяемый системой единичных векторов Pn+1, Pn+2, …, Pn+m, образующих базис m-мерного пространства, который называется искусственным. Сами векторы, так же как и переменные xn+i(i=1,m), называются искусственными. Так как расширенная задача имеет опорный план, то ее решение может быть найдено симплексным методом.

Теорема.Если в оптимальном планерасширенной задачи значения искусственных переменных xn+i*(i=1,m), то X=(x1*, x2*, …, xn*) является оптимальным планом основной задачи.

При опорном плане X*=(0, …, 0, b1, …, bm) расширенной задачи значение линейной формы есть

Таким образом, F0*и разности zj-cjсостоят из двух частей, одна из которых зависит от M, а другая – нет.

После вычисления F0*, иjих значения, а также исходные данные расширенной задачи заносят в таблицу, которая содержит на одну строку больше, чет обычная симплексная таблица. При этом в (m+2)-ю строку помещают коэффициенты при M, а в (m+1)-ю слагаемые, не содержащие M.

При переходе от одного опорного плана к другому в базис вводят вектор, соответствующий наибольшему по абсолютной величине отрицательному числу (m+2)-й строки. Искусственный вектор, исключенный из базиса в результате некоторой итерации, в дальнейшем не имеет смысла вводить ни в один из последующих базисов и, следовательно, преобразование столбцов этого вектора излишне.

Пересчет симплекс-таблицы при переходе от одного опорного плана к другому производят по общим правилам симплексного метода.

Итерационный процесс по (m+2)-й строке ведут до тех пор, пока:

1) либо все искусственные векторы не будут исключены из базиса;

2) либо не все искусственные векторы исключены, но (m+2)-я строка не содержит больше отрицательных элементов в столбцах векторов P1, P2, …, Pn+m.

В первом случае базис отвечает некоторому опорному плану исходной задачи и определение ее оптимального плана продолжают по (m+1)-й строке.

Во втором случае, если элемент стоящий в (m+2)-й строке столбца вектора P0, отрицателен, исходная задача не имеет решения; если он равен нулю, то найденный опорный план исходной задачи является вырожденным и базис содержит по крайней мере один из векторов искусственного базиса. Если исходная задача содержит несколько единичных векторов, то их следует включить в искусственный базис.

Если в найденном оптимальном плане расширенной задачи искусственных переменных равны нулю, то получен оптимальный план исходной задачи.