
- •Учебное пособие Ижевск Издательство ИжГту
- •Предисловие.
- •Введение.
- •Глава 1.
- •Основные свойства строительных материалов.
- •1.2. Определние истинной плотностии
- •Определение истинной плотности с помощью объемомера (колбы Ле–Шателье).
- •Определение истинной плотности пикнометрическим методом.
- •1.3. Определение средней плотности
- •Определение средней плотности на образцах правильной геометрической формы.
- •Определение средней плотности на образцах неправильной геометрической формы.
- •1.4 Определение насыпной плотности
- •1.5. Определение пористости и пустотности
- •1.6. Определение водопоглощения
- •1.7.Определение прочности и водостойкости.
- •1.8.Определение морозостойкости
- •Ускоренный метод испытания материалов на морозостойкость.
- •Контрольные вопросы.
- •Глава 2.
- •Природные каменные материалы
- •2.1. Изучение свойств породообразующих миералов
- •Шкала твердости минералов
- •Основные породообразующие минералы.
- •2.2. Изучение свойств горных пород
- •Р из осадочных пороДис. 2.3. Генетическая классификация горных пород.
- •Основные свойства некоторых горных пород
- •Контрольные вопросы
- •Глава 3. Стеновые керамические материалы
- •3.1. Оценка качества кирпича по внешнему осмотру
- •3.2. Определение водопоглощения по массе
- •3.3 Определение марки кирпича
- •Марки керамического обыкновенного кирпича пластического формования
- •Контрольные вопросы.
- •Глава 4.
- •Неорганические вяжущие вещества
- •А. Испытание строительной воздушной извести
- •Технические требования к строительной воздушной извести.
- •4.2. Определение скорости гашения извести
- •Б. Испытание строительного гипса.
- •Марки гипсовых вяжущих по прочности
- •4.3. Определение тонкости помола .
- •4.4. Определение нормальной густоты гипсового теста.
- •4.5. Определение сроков схватывания
- •4.6. Определение марки гипса.
- •Определение предела прочности образцов-балочек при изгибе.
- •Определение предела прочности при сжатии
- •В. Испытание портландцемента.
- •Технические требования к портландцементу.
- •4.7. Определение вида цемента
- •Требования к физико - механическим характеристикам основных видов цемента.
- •4.8. Определение тонкости помола
- •Определение тонкости помола цемента по величине удельной поверхности.
- •4.9. Определение насыпной плотности
- •4.10. Определение нормальной густоты цементного теста
- •4.11. Определение сроков схватывания
- •4.12. Определение равномерности изменения объема цемента.
- •4.13. Определение марки портландцемента.
- •Контрольные вопросы
- •Глава 5.
- •Металлургические и топливные шлаки
- •5.1. Классификация металлургических топливных шлаков.
- •Химический состав металлургических шпаков.
- •Золы и шлаки тэц.
- •Химический состав зол тэц
- •5.2. Физико-химические исследования шлаков
- •Электронная микроскопия
- •Идентификация минералов под электронным микроскопом
- •Рентгеноструктурный анализ
- •Термический анализ
- •5.3. Физико-механические испытания шлаков
- •Определение содержания слабых зерен и примесей металла
- •Определение устойчивости структуры шлаков против всех видов распада.
- •Марки прочности щебня из шлаков, определяемые по его дробимости в цилиндре.
- •Радиационно-гигиеническая оценка.
- •Соотношение между классами бетона по прочности на сжатие и растяжение и марками
- •Классификация бетонных смесей по удобоукладываемости.
- •6.2. Технические требования к крупному и мелкому заполнителю.
- •6.3. Испытание песка для бетона.
- •Определение истинной плотности песка пикнометрическим методом.
- •Определение насыпной средней плотности и пустотности.
- •Определение содержания органических примесей методом окрашивания (калориметрическая проба).
- •Определение зернового состава и модуля крупности песка.
- •6.4. Испытание крупного заполнителя Определение истинной, средней плотности зерен и насыпной плотности гравия или щебня. Расчет пустотности крупного заполнителя.
- •Определение зернового состава, наименьшей и наибольшей крупности зерен щебня (гравия).
- •Определение дробимости щебня (гравия) при сжатии (раздавливании) в цилиндре.
- •Определение удельной эффективной активности естественных радионуклидов.
- •6.5. Проектирование состава тяжелого бетона.
- •А. Расчет состава бетна по методу абсолютных объемов.
- •Значения коэффициентов а и а1
- •Ориентировочный расход воды л/м3, в зависимости от вида заполнителя и характера бетонной смеси
- •Минимальный расход цемента для получения нерасслаивающейся плотной бетонной смеси
- •Значение коэффициента α для подвижных бетонных смесей.
- •Б. Экспериментальная проверка расчетного состава бетона Определение подвижности бетонной смеси.
- •Изготовление образцов для определения прочности бетона и их испытание
- •Переводные коэффициенты к эталонной кубиковой прочности бетона.
- •Результаты испытаний.
- •В. Получение производственного состава бетона.
- •Г. Проектирование состава дорожного бетона.
- •6.6 Неразрушающие методы контроля прочности бетона
- •Определение прочности бетона методом ударного импульса.
- •Определение прочности бетона переносным прессом вм-п-2.0.
- •Определение прочности бетона склерометром оникс-2.5.
- •Статистический контроль прочности бетона.
- •Порядок проведения статистического контроля прочности бетона:
- •Контрольные вопросы.
- •Глава 7.
- •Строительные растворы
- •7.1 Классификация растворов
- •7.2 Определение подвижности растворной смеси
- •7.3 Определение средней плотности растворной смеси
- •7.4 Определение прочности затвердевшего раствора
- •Определение прочности при изгибе и сжатии образцов – балочек
- •Определение предела прочности образцов – кубов
- •Контрольные вопросы.
- •Глава 8. Металлические материалы
- •8.1 Классификация металлов и сплавов
- •Металлов: а-объемноценрированая кубическая; б-гранецентрированная кубическая; в-гексагональная
- •8.2 Изучение Диаграммы состояния железоуглеродистых
- •Сплавов.
- •Назначение режима Термической обработки стали.
- •8.3. Микроанализ железоуглеродистых сплавов
- •Б. Исследование микрошлифов под микроскопом
- •Результаты исследования
- •8.4 Макроанализ железоуглеродистых сплавов.
- •Изготовление макрошлифов
- •Б. Определение ликвации серы
- •В. Определение ликвации фосфора и углерода
- •Г. Макроанализ поверхности излома
- •8.5 Механические испытания стали
- •Определение марки стали
- •Определение твердости стали по методу Бринелля.
- •8.6 Изучение сортамента металлов.
- •А. Изучение сортамента прокатных профилей
- •Механические свойства углеродистых сталей обыкновенного качества.
- •Б. Стальная арматура для железобетона
- •Физико-механические свойства арматурной стали
- •Классы арматурной стали
- •В. Цветные металлы
- •Контрольные вопросы.
- •Глава 9. Лесные материалы.
- •Основные физико-механические свойства некоторых пород древесины
- •9.1.Изучение строения древесины.
- •А. Макроструктура древесины.
- •Б. Микроструктура древесины.
- •Строения сосны
- •Строения дуба
- •9.2.Определение физических свойств древесины.
- •А. Определение влажности.
- •Б. Определение средней плотности.
- •В. Определение числа годичных слоев и процента поздней древесины.
- •9.3. Определение механических свойств древесины
- •А. Определение предела прочности при сжатии вдоль волокон.
- •Б. Определение предела прочности при статическом изгибе.
- •В. Определение предела прочности при скалывании вдоль волокон
- •9.4. Изучение пороков древесины.
- •Контрольные вопросы.
- •Глава 10.
- •Испытание битумных вяжущих и материалов на их основе. А. Испытание нефтяных битумов.
- •10.1. Классификация битумных вяжущиих.
- •Марки нефтяных битумов
- •10.2. Определение температуры размягчения битума
- •10.3. Определение вязкости
- •10.4. Определенеи растяжимости
- •10.5. Определение температуры вспышки
- •Б. Испытание кровельных материалов
- •Технические характеристики некоторых рулонных кровельных материалов.
- •10.6. Определение качества рулонного материала по внешним признакам.
- •10.7.Определение гибкости
- •10.8. Определение водопоглощения
- •10.9. Определение массы 1 м2 рулонного материала
- •10.10. Определение массы покровного слоя
- •10.11. Определение водонепроницаемости
- •10.12. Определение предела прочности при растяжении
- •В. Испытание горячего асфальтобетона.
- •10.13. Определение средней плотности
- •10.14. Определение водонасыщения и набухания
- •10.15. Определение предела прочности при сжатии и коэфициента водостойкости.
- •Контрольные вопросы.
- •Глава 11.
- •Материалы и изделия на основе полимеров.
- •11.1 Состав и свойства пластмасс
- •11.2. Изучение полимерных строитекльных материалов по коллекциям.
- •Эксплуатационные свойства волокнистых кпм
- •11.3. Определение твердости пластмасс по бринеллю.
- •11.4. Определение предела прочности строительных пластмасс при растяжении.
- •11.5. Определение плотности прессованых полимерных материалов
- •11.5. Определение водопоглощения
- •Контрольные вопросы.
- •Глава 12. Теплоизоляционные материалы.
- •Физико-механические свойства некоторых теплоизоляционных материалов и изделий.
- •12.1.Изучение теплоизоляционных материалов по коллекциям
- •12.2. Испытание минеральной ваты.
- •Определение средней плотности.
- •Определение влажности минеральной ваты.
- •12.3. Испытание пенополистирола.
- •Определение плотности, влажности и коэффициента теплопроводности.
- •Определение водопоглощения, %.
- •Определение прочности на сжатие.
- •Контрольные вопросы.
- •Глава13.
- •Лакокрасочные материалы
- •Технические требования к некоторым лакокрасочным материалам.
- •13.1. Определение вязкости красочного состава
- •13.2. Определение твердости пленки.
- •13. 3. Определение пластичности пленки.
- •13. 4. Определение укрывистости красочного состава.
- •Контрольные вопросы.
- •Государственные стандарты (гост) на основные строительные материалы и методы их испытаний
- •Литература.
- •Содержание
- •Глава5. Металлургические и топливные шлаки
- •Глава11. Материалы и изделия на основе полимеров
- •Глава12. Теплоизоляционные материалы
- •Глава13. Лакокрасочные материалы
- •Юдина Людмила Викторовна Испытание и исследование строительных материалов
Золы и шлаки тэц.
Зола — это несгорающий остаток, образующийся из минеральных примесей топлива при полном его сгорании и осажденный из дымовых газов золоулавливающими устройствами, с размерами зерен менее 0,16 мм. В зависимости от вида топлива зола подразделяется на антрацитовую, каменноугольную, буроугольную, сланцевую, торфяную и др По способу удаления золы от тепловых агрегатов она подразделяется на золу сухого отбора — зола-унос и золу мокрого отбора — зола гидроудаления. Зола-унос получается в результате очистки дымовых газов золоуловителями и представляет из себя тонкодисперсный материал с весьма малым размером частиц, что позволяет использовать ее для ряда производств без дополнительного помола. Зола мокрого отбора образуется при удалении ее с помощью воды в виде пульпы по золопроводам. Топливный шлак — это материал, образующийся в топках .тепловых агрегатов, скапливающийся в нижней части топочного пространства и удаляемый в жидком или спекшемся состоянии. При совместном удалении золы и шлака гидротранспортом на тепловых электростанциях образуется так называемая золошлаковая смесь.
По химическому составу золы и шлаки ТЭЦ аналогично металлургическим подразделяются на основные, кислые, нейтральные. Основные золы содержат гидравлически активные компоненты и во многих случаях являются самостоятельными вяжущими. Кислые золы имеют свойства типичных пуццоланов и могут использоваться как активные минеральные добавки. Анализ химического состава зол и шлаков, применяемых в нашей стране и за рубежом , (табл. 5.4) показывает, что самым важным оксидом в составе зол является SiO2 , количество которого, как правило, составляет свыше 30...40%. Вместе с тем необходимо отметить довольно высокое содержание Аl2О3 и Fe2O3.
Таблица 5.4.
Химический состав зол тэц
ТЭЦ |
Содержание, % | |||||||
Si02 |
AI2О3 |
Fe2O3 |
Ca0 |
Mg0 |
K2O |
Na2O |
п.п.п. при = 1000°C | |
ТЭЦ-2, г. Ижевск |
51,66 |
19,54 |
6,99 |
3,00 |
0,81 |
0,54 |
0,12 |
4..5 |
ТЭЦ, работающие |
|
|
|
|
|
|
|
|
на кузнецком угле |
50-64 |
18-30 |
4,0-15 |
2,0-10 |
0,5- |
1,3-2,4 |
0,5-1,3 |
3,0-22 |
(РФ) |
|
|
|
|
2,5 |
|
|
|
ТЭЦ, г. Боров-Дол |
50-58 |
15-22 |
8,8- |
2,2. |
1,7- |
2,6-3,4 |
— |
0,3-2 |
Болгария |
|
|
10,3 |
3,0 |
2,2 |
|
|
|
ТЭЦ, Республика |
55-59 |
25-29 |
5,8- |
1,5- |
1,3- |
1.2-2,3 |
— |
0,5-2 |
Болгария |
|
|
10,4 |
3,7 |
3,0 |
|
|
|
ТЭЦ, г. Турув |
|
|
|
|
|
|
|
|
Польша |
51,01 |
33,69 |
4,57 |
1,68 |
0,52 |
1,66 |
0,39 |
3,68 |
ТЭЦ, г. Сталева- |
|
|
|
|
|
|
|
|
Воля Польша |
51,57 |
19..62 |
5..57 |
4,04 |
0.5 |
1,8 |
0,34 |
4,3 |
ТЭЦ Японии |
53-63 |
25-28 |
2-6 |
1-7 |
•1-2 |
1,8-3,2 |
0,8-2,4 |
0,1-1,2 |
ТЭЦ Англии |
41-51 |
23-34 |
6-14 |
1-8 |
1,4-3 |
1,8-4,2 |
0,2-1,9 |
0,6-2,7 |
ТЭЦ Франции |
29-54 |
10-33 |
5-15 |
1-39 |
1,0-5 |
0,7-6,0 |
0,1-9,0 |
0,3-15,2 |
ТЭЦ ФРГ |
34-50 |
21-29 |
8-21 |
2-12 |
1,0-5 |
— |
— |
1,5-20,1 |
ТЭЦ США |
32-52 |
14-28 |
8-31 |
2-12 |
0-2 |
— |
— |
1,0-18 |