Лекции 1-4 (2 семестр)
.pdf
ɉɈɇəɌɂȿ ȺɅȽɈɊɂɌɆȺ
ɋɨɫɬɚɜɢɬɶ ɚɥɝɨɪɢɬɦ ɨɡɧɚɱɚɟɬ ɪɚɡɞɟɥɢɬɶ ɡɚɞɚɱɢ ɧɚ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨ ɜɵɩɨɥɧɹɟɦɵɟ ɷɬɚɩɵ ɩɪɢ ɷɬɨɦ ɞɨɥɠɧɵ ɛɵɬɶ ɱɟɬɤɨ ɭɤɚɡɚɧɵ:
ɫɨɞɟɪɠɚɧɢɟ ɤɚɠɞɨɝɨ ɷɬɚɩɚ
ɩɨɪɹɞɨɤ ɢɯ ɜɵɩɨɥɧɟɧɢɹ
Ⱦɢɫɤɪɟɬɧɨɫɬɶ – ɬɟ ɚɥɝɨɪɢɬɦ ɞɨɥɠɟɧ ɩɪɟɞɫɬɚɜɥɹɬɶ ɫɨɛɨɣ ɩɪɨɰɟɫɫ ɪɟɲɟɧɢɹ ɡɚɞɚɱɢ ɤɚɤ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨɫɬɶ ɜɵɩɨɥɧɟɧɢɹ ɩɪɨɫɬɵɯ ɲɚɝɨɜ
Ɉɩɪɟɞɟɥɟɧɧɨɫɬɶ – ɤɚɠɞɵɣ ɲɚɝ ɚɥɝɨɪɢɬɦɚ ɞɨɥɠɟɧ ɛɵɬɶ ɨɩɢɫɚɧ ɱɟɬɤɨ ɢ ɧɟ ɨɫɬɚɜɥɹɬɶ ɦɟɫɬɚ ɞɥɹ ɩɪɨɢɡɜɨɥɚ
Ɋɟɡɭɥɶɬɚɬɢɜɧɨɫɬɶ – ɚɥɝɨɪɢɬɦ ɞɨɥɠɟɧ ɩɪɢɜɨɞɢɬɶ ɤ ɪɟɲɟɧɢɸ ɡɚɞɚɱɢ ɡɚ ɤɨɧɟɱɧɨɟ ɱɢɫɥɨ ɲɚɝɨɜ
Ɇɚɫɫɨɜɨɫɬɶ – ɚɥɝɨɪɢɬɦ ɪɟɲɟɧɢɹ ɡɚɞɚɱɢ ɪɚɡɪɚɛɚɬɵɜɚɟɬɫɹ ɜ ɨɛɳɟɦ ɜɢɞɟ ɢ ɞɨɥɠɟɧ ɛɵɬɶ ɞɥɹ ɪɟɲɟɧɢɹ ɧɟɤɨɬɨɪɨɝɨ ɤɥɚɫɫɚ ɡɚɞɚɱ ɪɚɡɥɢɱɚɸɳɢɦɢɫɹ ɬɨɥɶɤɨ ɢɫɯɨɞɧɵɦɢ ɞɚɧɧɵɦɢ
  | 
	1.  | 
ɇɚ ɟɫɬɟɫɬɜɟɧɧɨɦ ɹɡɵɤɟ  | 
	2.  | 
3.  | 
ȼ ɜɢɞɟ ɫɯɟɦɵ ɫɨɫɬɚɜɥɟɧɢɟ ɛɥɨɤ-ɫɯɟɦɵ
ɇɚ ɫɩɟɰɢɚɥɶɧɨɦ ɚɥɝɨɪɢɬɦɢɱɟɫɤɨɦ ɹɡɵɤɟ 4.
ɩɪɨɝɪɚɦɦɚ  | 
	5.  | 
ɇɚɱɚɬɶ ɜɵɩɨɥɧɟɧɢɹ ɜɵɱɢɫɥɟɧɢɹ Ɂɚɞɚɬɶ ɡɧɚɱɟɧɢɹ ɏ ɢ <
ȼɵɱɢɫɥɢɬɶ ɫɭɦɦɭ ɡɧɚɱɟɧɢɣ ɏ ɢ < ɢ ɩɪɢɫɜɨɢɬɶ S. S=X+Y
ȼȩȐȓȟȠȖ ɩɨɥɭɱɟɧɧɨɟ ɡțȎȥȓțȖȓ S Ɂɚɤɨɧɱɢɬɶ ɜɵɩɨɥɧɟɧɢɹ ɜɵɱɢɫɥɟɧɢɹ
ȼɵɱɢɫɥɢɬɶ ɫɭɦɦɭ ɢɡ ɞɜɭɯ ɧɟɪɚɜɧɵɯ ɱɢɫɟɥ ; ɢ < ɢ ɩɪɢɫɜɨɢɬɶ ɷɬɨ ɡɧɚɱɟɧɢɟ ɩɟɪɟɦɟɧɧɨɣ S.
ɗɬɨ ɧɚɝɥɹɞɧɨɟ ɝɪɚɮɢɱɟɫɤɨɟ ɢɡɨɛɪɚɠɟɧɢɟ ɚɥɝɨɪɢɬɦɚ ɤɨɝɞɚ ɨɬɞɟɥɶɧɵɟ ɲɚɝɢ ɚɥɝɨɪɢɬɦɚ ɢɡɨɛɪɚɠɚɸɬɫɹ ɩɪɢ ɩɨɦɨɳɢ ɝɟɨɦɟɬɪɢɱɟɫɤɢɯ ɮɢɝɭɪ ɛɥɨɤɨɜ ɚ ɫɜɹɡɢ ɦɟɠɞɭ ɧɢɦɢ – ɩɪɢ ɩɨɦɨɳɢ ɫɬɪɟɥɨɤ ɫɨɟɞɢɧɹɸɳɢɯ ɷɬɢ ɛɥɨɤɢ
ȼɕɑɂɋɅȿɇɂȿ
Ⱦɚ ɉɪɨɜɟɪɤɚ ɭɫɥɨɜɢɹɥɨɝɢɱɟɫɤɢ ɣ ɛɥɨɤ
ɜɜɨɞ ɢ ɜɵɜɨɞ
ɫɨɟɞɢɧɢɬɟɥɶ ɧɚɱɚɥɨ ɢ ɤɨɧɟɰ ɩɪɨɝɪɚɦɦɵ
ɇɟɬ  | 
	ɰɢɤɥɢɱɟɫɤɢɣ  | 
  | 
|
  | 
	ɛɥɨɤ  | 
ɜɵɱɢɫɥɟɧɢɟ ɩɨ ɩɨɞɩɪɨɝɪɚɦɦɟ
ɇȺɑȺɅɈ
X, Y
S=X+Y
S
Program primer1;
Var X, Y, S:real;
Begin
Write(‘Vvedite X, Y’);
Readln(X,Y);
S:=X+Y;
Writeln(‘Summa=‘,S:5:3);
End.
Ⱥɥɮɚɜɢɬ ɹɡɵɤɚ ɉɚɫɤɚɥɶ
ɄɈɇȿɐ
ɗɥɟɦɟɧɬɵ ɚɥɮɚɜɢɬɚ ɦɨɠɧɨ ɭɫɥɨɜɧɨ ɪɚɡɛɢɬɶ ɧɚ ɝɪɭɩɩɵ
ɫɢɦɜɨɥɵ ɢɫɩɨɥɶɡɭɟɦɵɟ ɜ ɢɞɟɧɬɢɮɢɤɚɬɨɪɚɯ
ɪɚɡɞɟɥɢɬɟɥɢ
ɫɩɟɰɢɚɥɶɧɵɟ ɫɢɦɜɨɥɵ
ɧɟɢɫɩɨɥɶɡɭɟɦɵɟ ɫɢɦɜɨɥɵ
ɂȾȿɇɌɂɎɂɄȺɌɈɊ - ɢɦɹ ɥɸɛɨɝɨ ɨɛɴɟɤɬɚ ɩɪɨɝɪɚɦɦɵ – ɦɨɠɟɬ ɜɤɥɸɱɚɬɶ ɛɭɤɜɵ ɰɢɮɪɵ ɢ ɫɢɦɜɨɥ ɩɨɞɱɟɪɤɢɜɚɧɢɹ
ȼ ɤɚɱɟɫɬɜɟ ɛɭɤɜ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɞɜɚɞɰɚɬɶ ɲɟɫɬɶ ɥɚɬɢɧɫɤɢɯ ɛɭɤɜ ɨɬ Ⱥ ɞɨ =
ɉɪɨɩɢɫɧɵɟ ɢ ɫɬɪɨɱɧɵɟ ɛɭɤɜɵ ɜ ɢɞɟɧɬɢɮɢɤɚɬɨɪɚɯ ɱɢɫɥɚɯ ɢ ɫɥɭɠɟɛɧɵɯ ɫɥɨɜɚɯ ɧɟ ɪɚɡɥɢɱɚɸɬɫɹ
ȼ ɤɚɱɟɫɬɜɟ ɰɢɮɪ ɞɨɩɭɫɬɢɦɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɚɪɚɛɫɤɢɯ ɰɢɮɪ ɨɬ 0 ɞɨ 9.
ȼ ɢɞɟɧɬɢɮɢɤɚɬɨɪɚɯ ɰɢɮɪɵ ɦɨɝɭɬ ɩɪɢɫɭɬɫɬɜɨɜɚɬɶ ɜ ɥɸɛɨɣ ɩɨɡɢɰɢɢ ɤɪɨɦɟ ɉȿɊȼɈɃ
ɋɢɦɜɨɥ ɩɨɞɱɟɪɤɢɜɚɧɢɹ © _ ª ɦɨɠɟɬ ɧɚɯɨɞɢɬɶɫɹ ɜ ɥɸɛɨɣ ɩɨɡɢɰɢɢ
Ⱦɥɢɧɚ ɢɞɟɧɬɢɮɢɤɚɬɨɪɚ ɮɨɪɦɚɥɶɧɨ ɧɟ ɨɝɪɚɧɢɱɟɧɧɚ ɧɨ ɡɧɚɱɢɦɵɦɢ ɹɜɥɹɸɬɫɹ ɩɟɪɜɵɟ ɫɢɦɜɨɥɚ
Ɋɚɡɞɟɥɢɬɟɥɢ ɢɫɩɨɥɶɡɭɸɬɫɹ ɞɥɹ ɨɬɞɟɥɟɧɢɹ ɞɪɭɝ ɨɬ ɞɪɭɝɚ ɢɞɟɧɬɢɮɢɤɚɬɨɪɨɜ ɱɢɫɟɥ ɫɥɭɠɟɛɧɵɯ ɫɥɨɜ
ȼ ɤɚɱɟɫɬɜɟ ɪɚɡɞɟɥɢɬɟɥɟɣ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ
ɩɪɨɛɟɥ
ɤɨɦɦɟɧɬɚɪɢɣ
ɇɚɩɪɢɦɟɪ NAME, NAMe, nAmE ɛɭɞɭɬ ɢɞɟɧɬɢɱɧɵ
ȿɫɥɢ ɦɟɠɞɭ ɞɜɭɦɹ ɛɭɤɜɚɦɢ ɢɦɟɧɢ ɫɬɨɢɬ ©ɩɪɨɛɟɥª ɬɨ ɷɬɢ ɞɜɟ ɛɭɤɜɵ ɫɱɢɬɚɸɬɫɹ ɩɪɢɧɚɞɥɟɠɚɳɢɦɢ ɪɚɡɥɢɱɧɵɦ ɢɦɟɧɚɦ ɩɟɪɟɦɟɧɧɵɯ Ʉɨɥɢɱɟɫɬɜɨ ɩɪɨɛɟɥɨɜ ɧɟ ɹɜɥɹɟɬɫɹ ɡɧɚɱɚɳɢɦ ɬɟ ɝɞɟ ɫɬɨɢɬ ɨɞɢɧ ɩɪɨɛɟɥ ɬɚɦ ɦɨɠɧɨ ɩɨɫɬɚɜɢɬɶ ɢ ɛɨɥɶɲɟ
Ʉɨɦɦɟɧɬɚɪɢɢ ɡɚɤɥɸɱɚɸɬɫɹ ɥɢɛɨ ɜ ɫɤɨɛɤɢ { } ɥɢɛɨ ɜ ɫɤɨɛɤɢ ɜɢɞɚ (* *) ɢ ɦɨɝɭɬ ɡɚɧɢɦɚɬɶ ɥɸɛɨɟ ɱɢɫɥɨ ɫɬɪɨɤ
ȼɨ ɜɪɟɦɹ ɤɨɦɩɢɥɹɰɢɢ ɩɪɨɝɪɚɦɦɵ ɜɫɟ ɤɨɦɦɟɧɬɚɪɢɢ ɢɝɧɨɪɢɪɭɸɬɫɹ
ɋɩɟɰɢɚɥɶɧɵɟ ɫɢɦɜɨɥɵ ɜɵɩɨɥɧɹɸɳɢɟ ɜ ɹɡɵɤɟ ɨɩɪɟɞɟɥɟɧɧɵɟ ɮɭɧɤɰɢɢ ɦɨɠɧɨ ɪɚɡɞɟɥɢɬɶ ɧɚ ɱɟɬɵɪɟ ɤɚɬɟɝɨɪɢɢ
1.Ɂɧɚɤɢ ɩɭɧɤɬɭɚɰɢɢ
2.Ɂɧɚɤɢ ɨɩɟɪɚɰɢɢ
3.ɋɨɫɬɚɜɧɵɟ ɫɢɦɜɨɥɵ
4.Ɂɚɪɟɡɟɪɜɢɪɨɜɚɧɧɵɟ ɫɥɨɜɚ
Ⱦɨɩɭɫɬɢɦɵɟ ɡɧɚɤɢ ɩɭɧɤɬɭɚɰɢɢ
{ } [ ] ( ) ‘ ; : , . = @ # > < $
Ɂɧɚɤɢ ɨɩɟɪɚɰɢɣ ɩɪɟɞɧɚɡɧɚɱɟɧɵ ɞɥɹ ɨɛɨɡɧɚɱɟɧɢɹ ɚɪɢɮɦɟɬɢɱɟɫɤɢɯ ɢɥɢ ɥɨɝɢɱɟɫɤɢɯ ɞɟɣɫɬɜɢɣ Ɉɧɢ ɛɵɜɚɸɬ ɞɜɭɯ ɬɢɩɨɜ
  | 
	ɫɨɫɬɨɹɳɢɟ ɢɡ ɧɟɛɭɤɜɟɧɧɵɯ ɫɢɦɜɨɥɨɜ  | 
	+  | 
	-  | 
	* /  | 
  | 
	ɛɭɤɜɟɧɧɵɟ ɨɩɟɪɚɰɢɢ ɩɪɟɞɫɬɚɜɥɹɸɳɢɟ ɫɨɛɨɣ  | 
	
  | 
	mod  | 
|
  | 
	ɡɚɪɟɡɟɪɜɢɪɨɜɚɧɧɵɟ ɫɥɨɜɚ not ɧɟ  | 
	div  | 
	
  | 
|
ɋɨɫɬɚɜɧɵɟ ɫɢɦɜɨɥɵ – ɨɧɢ ɜɨɫɩɪɢɧɢɦɚɸɬɫɹ ɤɚɤ ɨɞɢɧ ɩɪɨɛɟɥ ɦɟɠɞɭ ɧɢɦɢ ɧɟɞɨɩɭɫɬɢ
:= > =  | 
	< =  | 
	< >  | 
	. . ( . . )  | 
	( * * )  | 
4. Ɂɚɪɟɡɟɪɜɢɪɨɜɚɧɧɵɟ ɫɥɨɜɚ ɜɤɥɸɱɚɸɬ ɫɥɭɠɟɛɧɵɟ ɫɥɨɜɚ ɢ ɢɦɟɧɚ ɞɢɪɟɤɬɢɜ ɋɥɭɠɟɛɧɵɟ ɫɥɨɜɚ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɬɨɥɶɤɨ ɩɨ ɫɜɨɟɦɭ ɩɪɹɦɨɦɭ ɧɚɡɧɚɱɟɧɢɸ ɢ ɢɯ ɧɟɥɶɡɹ ɩɟɪɟɨɩɪɟɞɟɥɹɬɶ ɢ ɢɫɩɨɥɶɡɨɜɚɬɶ ɜ ɤɚɱɟɫɬɜɟ ɢɦɟɧ ɩɟɪɟɦɟɧɧɵɯ
ARRAY – ɦɚɫɫɢɜ  | 
	AND – ɢ  | 
	BEGIN – ɧɚɱɚɥɨ  | 
CASE – ɜɚɪɢɚɧɬ  | 
	CONST – ɤɨɧɫɬɚɧɬɚ  | 
	DIV – ɰɟɥɚɹ ɱɚɫɬɶ ɨɬ ɞɟɥɟɧɢɹ  | 
DO – ɞɟɥɚɬɶ  | 
	DOWNTO – ȡȚȓțȪȦȎȠȪ ȒȜ…  | 
	ELSE – ɢɧɚɱɟ  | 
END – ɤɨɧɟɰ  | 
	FILE – ɮɚɣɥ  | 
	FOR - ɞɥɹ  | 
FUNCTION – ɮɭɧɤɰɢɹ  | 
	GOTO – ɩɟɪɟɯɨɞ  | 
	TO – ɤ  | 
UNTIL – ɞɨ  | 
	VAR – ɩɟɪɟɦɟɧɧɚɹ  | 
	IF – ɟɫɥɢ  | 
IN – ɜ  | 
	LABEL – ɦɟɬɤɚ  | 
	NOT – ɧɟ  | 
OFF – ɢɡ  | 
	MOD – ɨɫɬɚɬɨɤ ɨɬ ɞɟɥɟɧɢɹ  | 
	OR - ɢɥɢ  | 
PROCEDURE – ɩɪɨɰɟɞɭɪɚ  | 
	PROGRAM – ɩɪɨɝɪɚɦɦɚ  | 
	RECORD – ɡɚɩɢɫɶ  | 
REPEAT – ɩɨɜɬɨɪ  | 
	SET – ɦɧɨɠɟɫɬɜɨ  | 
	THEN – ɬɨɝɞɚ ɬɨ  | 
TYPE – ɬɢɩ  | 
	WHILE – ɩɨɤɚ  | 
	WITH – ɫ  | 
ɋɢɦɜɨɥɵ % ? ! s ɜɤɥɸɱɚɹ ɛɭɤɜɵ ɊɍɋɋɄɈȽɈ ɚɥɮɚɜɢɬɚ ɜ ɚɥɮɚɜɢɬ ɹɡɵɤɚ 3$6&$/ ɧɟ ɜɯɨɞɹɬ ɧɨ ɢɯ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɜ ɤɨɦɦɟɧɬɚɪɢɹɯ.
ɋɬɪɭɤɬɭɪɚ ɩɪɨɝɪɚɦɦɵ
ȼ ɩɪɨɝɪɚɦɦɟ ɧɚɩɢɫɚɧɧɨɣ ɧɚ ɫɬɚɧɞɚɪɬɟ ɹɡɵɤɚ 3$6&$/ ɦɨɝɭɬ ɛɵɬɶ ɫɥɟɞɭɸɳɢɟ ɪɚɡɞɟɥɵ
ɡɚɝɨɥɨɜɨɤ ɩɪɨɝɪɚɦɦɵ - Program;
ɪɚɡɞɟɥ ɨɛɴɹɜɥɟɧɢɹ ɢɫɩɨɥɶɡɭɟɦɵɯ ɦɨɞɭɥɟɣ - Uses;
ɪɚɡɞɟɥ ɨɛɴɹɜɥɟɧɢɹ ɦɟɬɨɤ - Label;
ɪɚɡɞɟɥ ɨɛɴɹɜɥɟɧɢɹ ɤɨɧɫɬɚɧɬ – Const;
ɪɚɡɞɟɥ ɨɛɴɹɜɥɟɧɢɹ ɬɢɩɨɜ - Type;
ɪɚɡɞɟɥ ɨɛɴɹɜɥɟɧɢɹ ɩɟɪɟɦɟɧɧɵɯ - Var;
ɪɚɡɞɟɥ ɨɛɴɹɜɥɟɧɢɹ ɩɪɨɰɟɞɭɪ ɢ ɮɭɧɤɰɢɣ – Procedure Function;
ɬɟɥɨ ɩɪɨɝɪɚɦɦɵ – Begin End..
Ɋɚɡɞɟɥɵ ɞɨɥɠɧɵ ɨɛɹɡɚɬɟɥɶɧɨ ɪɚɫɩɨɥɚɝɚɬɶɫɹ ɜ ɭɤɚɡɚɧɧɨɦ ɜɵɲɟ ɩɨɪɹɞɤɟ
ɫɨɫɬɨɢɬ ɢɡ ɡɚɪɟɡɟɪɜɢɪɨɜɚɧɧɨɝɨ ɫɥɨɜɚ PROGRAM ɢ ɂɆȿɇɂ ɩɪɨɝɪɚɦɦɵ
ɂɦɹ ɩɪɨɝɪɚɦɦɵ ɦɨɠɟɬ ɫɨɞɟɪɠɚɬɶ ɥɸɛɨɣ ɧɚɛɨɪ ɫɢɦɜɨɥɨɜ ɚɥɮɚɜɢɬɚ ɹɡɵɤɚ 3$6&$/ ɧɨ ȼɋȿȽȾȺ ɧɚɱɢɧɚɟɬɫɹ ɋ ȻɍɄȼɕ
ɉɪɢɦɟɪɵ PROGRAM PRIMER;
PROGRAM Primer1;
Program Primer_1;
ɋ ɩɨɦɨɳɶɸ ɷɬɨɝɨ ɪɚɡɞɟɥɚ ɩɨɞɤɥɸɱɚɸɬɫɹ ɛɢɛɥɢɨɬɟɱɧɵɟ ɦɨɞɭɥɢ ɋɨɫɬɨɢɬ ɢɡ ɡɚɪɟɡɟɪɜɢɪɨɜɚɧɧɨɝɨ ɫɥɨɜɚ USES ɢ ɂɆȿɇɂ ɦɨɞɭɥɹ ɟɣ
ɋɩɢɫɨɤ ɛɢɛɥɢɨɬɟɤ ɡɚɞɚɟɬɫɹ ɱɟɪɟɡ ɡɚɩɹɬɭɸ ɇɚɩɪɢɦɟɪ USES CRT; {Ɍɟɤɫɬɨɜɵɣ ɪɟɠɢɦ}
USES GRAPH; {Ƚɪɚɮɢɱɟɫɤɢɣ ɪɟɠɢɦ}
USES GRAPH, CRT;
ɋɨɞɟɪɠɢɬ ɩɟɪɟɱɢɫɥɟɧɧɵɟ ɱɟɪɟɡ ɡɚɩɹɬɭɸ ɦɟɬɤɢ ɩɟɪɟɯɨɞɨɜ
ɋɨɫɬɨɢɬ ɢɡ ɡɚɪɟɡɟɪɜɢɪɨɜɚɧɧɨɝɨ ɫɥɨɜɚ LABEL ɢ ɂɆȿɇɂ ɦɟɬɨɤ
Ɇɟɬɤɢ ɦɨɝɭɬ ɨɛɨɡɧɚɱɚɬɶɫɹ ɰɢɮɪɚɦɢ ɜ ɞɢɚɩɚɡɨɧɟ ɨɬ ɞɨ
ɢɥɢ ɥɚɬɢɧɫɤɢɦɢ ɛɭɤɜɚɦɢ ɇɚɩɪɢɦɟɪ LABEL lb1;
LABEL PA, lb1, N1, 15, 120;
ȿɫɥɢ ɡɧɚɱɟɧɢɟ ɤɚɤɨɣ-ɥɢɛɨ ɩɟɪɟɦɟɧɧɨɣ ɢɡɜɟɫɬɧɨ ɡɚɪɚɧɟɟ ɢ ɩɪɢ ɜɵɩɨɥɧɟɧɢɢ ɩɪɨɝɪɚɦɦɵ ɨɧɨ ɧɟ ɢɡɦɟɧɢɬɫɹ ɬɨ ɷɬɭ ɩɟɪɟɦɟɧɧɭɸ ɦɨɠɧɨ ɨɩɢɫɚɬɶ ɜ ɪɚɡɞɟɥɟ ɨɛɴɹɜɥɟɧɢɹ ɤɨɧɫɬɚɧɬ
Ɋɚɡɞɟɥ ɨɛɴɹɜɥɟɧɢɹ ɤɨɧɫɬɚɧɬ ɧɚɱɢɧɚɟɬɫɹ ɫɨ ɫɥɭɠɟɛɧɨɝɨ ɫɥɨɜɚ CONST ɩɨɫɥɟ ɤɨɬɨɪɨɝɨ ɡɚɞɚɸɬɫɹ ɂɆȿɇȺ ɢ ɁɇȺɑȿɇɂə ɤɨɧɫɬɚɧɬ ɪɚɡɞɟɥɟɧɧɵɟ ɡɧɚɤɨɦ ɪɚɜɧɨ © = »
ɉɪɢɦɟɪ CONST N=4; Ⱥȼ Ɋ ‘ ɋɥɨɜɨ’;
ɋ )$/6( Ʉ ȿ – 5;
Ɍɢɩ ɤɨɧɫɬɚɧɬɵ ɨɩɪɟɞɟɥɹɟɬɫɹ ɬɢɩɨɦ ɟɟ ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɝɨ ɡɧɚɱɟɧɢɹ
ɧɚɱɢɧɚɟɬɫɹ ɡɚɪɟɡɟɪɜɢɪɨɜɚɧɧɵɦ ɫɥɨɜɨɦ TYPE ɩɨɫɥɟ ɤɨɬɨɪɨɝɨ ɨɩɪɟɞɟɥɹɸɬɫɹ ɜɜɨɞɢɦɵɟ ɬɢɩɵ Ɉɩɪɟɞɟɥɟɧɢɟ ɤɚɠɞɨɝɨ ɧɨɜɨɝɨ ɬɢɩɚ ɧɚɱɢɧɚɟɬɫɹ ɫ ɂȾȿɇɌɂɎɂɄȺɌɈɊȺ ɌɂɉȺ ɢɦɹ ɬɢɩɚ ɡɚ ɧɢɦ ɡɧɚɤ © = ª ɚ ɞɚɥɟɟ – ɫɚɦɨ ɈɉɊȿȾȿɅȿɇɂȿ ɌɂɉȺ.
TYPE <ǶȚȭ ȠȖȝȎ> = <ȜȝȞȓȒȓșȓțȖȓ ȠȖȝȎ>;
ɇɚɩɪɢɦɟɪ TYPE Type1=array [1..10] of integer;
Type2=1..40;
ɉɟɪɟɦɟɧɧɵɦɢ ɧɚɡɵɜɚɸɬɫɹ ɩɚɪɚɦɟɬɪɵ ɩɪɨɝɪɚɦɦɵ ɡɧɚɱɟɧɢɹ ɤɨɬɨɪɵɯ ɦɨɝɭɬ ɢɡɦɟɧɹɬɫɹ ɜ ɩɪɨɰɟɫɫɟ ɟɟ ɜɵɩɨɥɧɟɧɢɹ ȼɫɟ ɢɫɩɨɥɶɡɨɜɚɧɧɵɟ ɜ ɩɪɨɝɪɚɦɦɟ ɩɟɪɟɦɟɧɧɵɟ ɞɨɥɠɧɵ ɛɵɬɶ ɨɩɢɫɚɧɵ ɜ ɪɚɡɞɟɥɟ ɨɛɴɹɜɥɟɧɢɹ ɩɟɪɟɦɟɧɧɵɯ ɫ ɭɤɚɡɚɧɢɟɦ ɢɯ ɬɢɩɨɜ Ɋɚɡɞɟɥ ɨɛɴɹɜɥɟɧɢɹ ɩɟɪɟɦɟɧɧɵɯ ɧɚɱɢɧɚɟɬɫɹ ɡɚɪɟɡɟɪɜɢɪɨɜɚɧɧɵɦ ɫɥɨɜɨɦ VAR ɡɚ ɤɨɬɨɪɵɦ ɫɥɟɞɭɟɬ ɨɛɴɹɜɥɟɧɢɹ ɤɨɧɤɪɟɬɧɵɯ ɩɟɪɟɦɟɧɧɵɯ ɫɨɫɬɨɹɳɢɟ ɢɡ ɂɆȿɇɂ ɉȿɊȿɆȿɇɇɈɃ ɞɜɨɟɬɨɱɢɹ ©:ª ɢ ɌɂɉȺ ɉȿɊȿɆȿɇɇɈɃ. Ʉɚɠɞɨɟ ɨɛɴɹɜɥɟɧɢɟ ɡɚɜɟɪɲɚɟɬɫɹ ɬɨɱɤɨɣ ɫ ɡɚɩɹɬɨɣ
VAR ɩɟɪɟɦɟɧɧɚɹ ! ɬɢɩ !
ɇɚɩɪɢɦɟɪ VAR a:real; c,d,m:integer;
ɷɬɨ ɨɫɧɨɜɧɨɣ ɛɥɨɤ ɩɪɨɝɪɚɦɦɵ ɩɪɢɫɭɬɫɬɜɭɟɬ ɜɫɟɝɞɚ ɇɚɱɢɧɚɟɬɫɹ ɫɥɨɜɨɦ BEGIN ɚ ɡɚɤɚɧɱɢɜɚɟɬɫɹ ɫɥɨɜɨɦ END. ɫ ɬɨɱɤɨɣ «.ª ɤɨɬɨɪɚɹ ɹɜɥɹɟɬɫɹ ɩɪɢɡɧɚɤɨɦ ɤɨɧɰɚ ɩɪɨɝɪɚɦɦɵ
Begin <Ɉɩɟɪɚɬɨɪ >; <Ɉɩɟɪɚɬɨɪ >;
………………
<Ɉɩɟɪɚɬɨɪ N>; End.
Ɍɢɩɵ ɞɚɧɧɵɯ
ȼɫɟ ɞɚɧɧɵɟ ɨɛɪɚɛɚɬɵɜɚɟɦɵɟ ɜ ɩɪɨɝɪɚɦɦɟ ɞɨɥɠɧɵ ɩɪɢɧɚɞɥɟɠɚɬɶ ɤ ɤɚɤɨɦɭ-ɥɢɛɨ ɡɚɪɚɧɟɟ ɢɡɜɟɫɬɧɨɦɭ ɬɢɩɭ
ɋɪɟɞɢ ɬɢɩɨɜ ɢɫɩɨɥɶɡɭɟɦɵɯ ɜ ɉɚɫɤɚɥɟ ɟɫɬɶ ɫɬɚɧɞɚɪɬɧɵɟ ɢ ɨɩɪɟɞɟɥɹɟɦɵɟ ɩɪɨɝɪɚɦɦɢɫɬɨɦ
Ʉ ɫɬɚɧɞɚɪɬɧɵɦ ɬɢɩɚɦ ɨɬɧɨɫɹɬɫɹ
ɑɢɫɥɨɜɵɟ ɬɢɩɵ
Ʌɨɝɢɱɟɫɤɢɣ ɬɢɩ
ɋɢɦɜɨɥɶɧɵɣ ɬɢɩ
Ɍɢɩ – ɫɬɪɨɤɚ
ɰɟɥɵɟ ɬɢɩɵ INTEGER ɢɦɟɸɬ ɞɢɚɩɚɡɨɧ ɢɡɦɟɧɟɧɢɹ ɱɢɫɟɥ ɨɬ - ɞɨ
ɜɟɳɟɫɬɜɟɧɧɵɟ ɢɥɢ ɞɟɣɫɬɜɢɬɟɥɶɧɵɟ ɬɢɩɵ REAL ɢɦɟɸɬ ɞɜɟ ɮɨɪɦɵ ɡɚɩɢɫɢ
¾ɫ ɮɢɤɫɢɪɨɜɚɧɧɨɣ ɞɟɫɹɬɢɱɧɨɣ ɬɨɱɤɨɣ 1.2 0.35 .78
¾ɫ ɩɥɚɜɚɸɳɟɣ ɬɨɱɤɨɣ ɢɥɢ ɜ ɷɤɫɩɨɧɟɧɰɢɚɥɶɧɨɦ ɜɢɞɟ ȿ Ɂ
103  | 
	ȿ-5 = 10-5  | 
	ɋɬɟɩɟɧɶ ɱɢɫɥɚ ɩɨɫɥɟ ȿ ɞɨɥɠɧɚ ɛɵɬɶ  | 
ɰɟɥɵɦ ɱɢɫɥɨɦ ɢ ɢɦɟɬɶ ɧɟ ɛɨɥɟɟ ɞɜɭɯ ɰɢɮɪ ɜ ɞɢɚɩɚɡɨɧɟ ɨɬ - ɞɨ  | 
||
+38.  | 
	
  | 
	
  | 
Ⱦɢɚɩɚɡɨɧ ɬɢɩɚ  | 
	
  | 
	
  | 
|
  | 
	REAL  | 
	ɨɬ 2,9 * 10-39  | 
	ɞɨ 1,7 * 1038  | 
  | 
	EXTENDED  | 
	ɨɬ 10-4951  | 
	ɞɨ 104932  | 
ɋɬɚɧɞɚɪɬɧɵɯ ɥɨɝɢɱɟɫɤɢɣ ɬɢɩ BOOLEAN ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɬɢɩ ɞɚɧɧɵɯ ɥɸɛɨɣ ɷɥɟɦɟɧɬ ɤɨɬɨɪɨɝɨ ɦɨɠɟɬ ɩɪɢɧɢɦɚɬɶ ɬɨɥɶɤɨ ɞɜɚ ɡɧɚɱɟɧɢɹ
FALSE – ɥɨɠɶ
TRUE – ɩɪɚɜɞɚ
Ɂɧɚɱɟɧɢɹ ɷɬɨɝɨ ɬɢɩɚ ɦɨɝɭɬ ɭɱɚɫɬɜɨɜɚɬɶ ɜ ɭɫɥɨɜɧɵɯ ɨɩɟɪɚɬɨɪɚɯ ɤɨɝɞɚ
FALSE < TRUE
ɋɢɦɜɨɥɶɧɵɣ ɬɢɩ CHAR – ɷɬɨ ɬɢɩ ɞɚɧɧɵɯ ɫɨɫɬɨɹɳɢɯ ɢɡ ɨɞɧɨɝɨ ɫɢɦɜɨɥɚ ɁɇȺɄȺ ɢɥɢ ȻɍɄȼɕ.
ɇɚɩɪɢɦɟɪ A Z #
STRING – ɷɬɨ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨɫɬɶ ɫɢɦɜɨɥɨɜ ɩɪɨɢɡɜɨɥɶɧɨɣ ɞɥɢɧɵ ɞɨ 255 ɫɢɦɜɨɥɨɜ
ɍ ɬɢɩɚ – ɫɬɪɨɤɢ ɜ ɤɜɚɞɪɚɬɧɵɯ ɫɤɨɛɤɚɯ « [ ] ª ɦɨɠɟɬ ɛɵɬɶ ɭɤɚɡɚɧ ɟɝɨ ɪɚɡɦɟɪ ɨɬ 1 ɞɨ 255).
ȿɫɥɢ ɪɚɡɦɟɪ ɫɬɪɨɤɢ ɧɟ ɭɤɚɡɚɧ ɬɨ ɨɧ ɫɱɢɬɚɟɬɫɹ ɪɚɜɧɵɦ
255.
ɇɚɩɪɢɦɟɪ VAR Str:string[80];
Ⱦɥɹ ɫɬɪɨɤ ɩɪɢɦɟɧɢɦɵ ɨɩɟɪɚɰɢɢ ɫɥɨɠɟɧɢɹ ɢ ɫɪɚɜɧɟɧɢɹ
  | 
	ʋ  | 
	Ɉɛɪɚɳɟɧɢɟ  | 
	ȼɵɩɨɥɧɹɟɦɚɹ  | 
	Ɍɢɩ  | 
	ɉɪɢɦɟɱɚɧɢɟ  | 
||
  | 
	
  | 
	
  | 
|||||
  | 
	ɝɪ.  | 
	ɧɚ ɉɚɫɤɚɥɟ  | 
	ɮɭɧɤɰɢɹ  | 
	ɚɪɝɭɦɟțɬɚ  | 
	ɪɟɡɭɥɶɬɚɬɚ  | 
||
  | 
	
  | 
	
  | 
|||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
  | 
	
  | 
	Abs(x)  | 
	| x |  | 
	real  | 
	real  | 
	
  | 
	
  | 
  | 
	
  | 
	Sqr(x)  | 
	x2  | 
	integer  | 
	integer  | 
	
  | 
	
  | 
  | 
	
  | 
	Arctan (x)  | 
	arctg x  | 
	
  | 
	
  | 
	sin(x2 )  | 
	sin(x * x)  | 
ɋɬɚɧɞɚɪɬɧɵɟ ɮɭɧɤɰɢɢ  | 
	
  | 
	
  | 
	
  | 
	®  | 
|||
  | 
	Exp (x)  | 
	ex  | 
	
  | 
	
  | 
	sin 2 (x)  | 
	¯sin(sqr(x))  | 
|
  | 
	
  | 
	
  | 
	®  | 
||||
  | 
	
  | 
	Cos (x)  | 
	cos x  | 
	
  | 
	
  | 
	
  | 
	sin(x) *sin(x)  | 
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
  | 
	
  | 
	
  | 
	
  | 
	Integer  | 
	
  | 
	
  | 
	sqr(sin(x))  | 
  | 
	1  | 
	Ln (x)  | 
	ln x  | 
	real  | 
	real  | 
	
  | 
	¯  | 
  | 
	x – ɜ ɪɚɞɢɚɧɚɯ  | 
||||||
  | 
	
  | 
	Sin (x)  | 
	sin x  | 
	
  | 
|||
  | 
	
  | 
	
  | 
	
  | 
	loga b  | 
	ln(b) / ln(a)  | 
||
  | 
	
  | 
	Sqrt (x)  | 
	x  | 
	
  | 
	
  | 
||
  | 
	
  | 
	
  | 
	
  | 
	lgb  | 
	ln(b) / ln(10)  | 
||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
  | 
	
  | 
	Int(x)  | 
	ɐɟɥɚɹ ɱɚɫɬɶ ɱɢɫɥɚ  | 
	real  | 
	real  | 
	Int (23.2) = 23.0  | 
|
  | 
	
  | 
	Frac (x)  | 
	Ⱦɪɨɛɧɚɹ ɱɚɫɬɶ ɱɢɫɥɚ  | 
	real  | 
	real  | 
||
  | 
	
  | 
	Frac (26.7) = 0.7  | 
|||||
  | 
	
  | 
	PI  | 
	ɑɢɫɥɨ S  | 
	-  | 
	real  | 
||
  | 
	
  | 
	
  | 
	
  | 
||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
ȼ ɹɡɵɤɟ Pascal ɫɭɳɟɫɬɜɭɟɬ ɪɹɞ ɡɚɪɚɧɟɟ ɪɚɡɪɚɛɨɬɚɧɧɵɯ ɩɪɨɝɪɚɦɦ – ɮɭɧɤɰɢɣ ɤɨɬɨɪɵɟ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɤɚɤ ɝɨɬɨɜɵɟ ɨɛɴɟɤɬɵ
1.Ⱥɪɢɮɦɟɬɢɱɟɫɤɢɟ ɮɭɧɤɰɢɢ Ⱥɪɢɮɦɟɬɢɱɟɫɤɢɟ ɮɭɧɤɰɢɢ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɬɨɥɶɤɨ ɫ ɜɟɥɢɱɢɧɚɦɢ ɰɟɥɨɝɨ ɢ ɜɟɳɟɫɬɜɟɧɧɨɝɨ ɬɢɩɚ Ɉɛɨɡɧɚɱɟɧɢɟ ɫɬɚɧɞɚɪɬɧɵɯ ɮɭɧɤɰɢɣ ɧɟɥɶɡɹ ɢɫɩɨɥɶɡɨɜɚɬɶ ɜ ɤɚɱɟɫɬɜɟ ɢɞɟɧɬɢɮɢɤɚɬɨɪɨɜ
2.Ɏɭɧɤɰɢɢ ɩɪɟɨɛɪɚɡɨɜɚɧɢɹ ɬɢɩɚ ɗɬɢ ɮɭɧɤɰɢɢ ɩɪɟɞɧɚɡɧɚɱɟɧɵ ɞɥɹ ɩɪɟɨɛɪɚɡɨɜɚɧɢɹ ɬɢɩɨɜ ɜɟɥɢɱɢɧ ɧɚɩɪɢɦɟɪ ɫɢɦɜɨɥɚ ɜ ɰɟɥɨɟ ɱɢɫɥɨ ɢɥɢ ɜɟɳɟɫɬɜɟɧɧɨɝɨ ɱɢɫɥɚ ɜ ɰɟɥɨɟ
3.Ɏɭɧɤɰɢɢ ɞɥɹ ɜɟɥɢɱɢɧ ɩɨɪɹɞɤɨɜɨɝɨ ɬɢɩɚ ɗɬɢ ɮɭɧɤɰɢɢ ɩɨɡɜɨɥɹɸɬ ɜɵɩɨɥɧɢɬɶ ɪɹɞ ɞɟɣɫɬɜɢɣ ɧɚɞ ɜɟɥɢɱɢɧɚɦɢ ɩɨɪɹɞɤɨɜɨɝɨ ɬɢɩɚ ɧɚɣɬɢ ɩɪɟɞɵɞɭɳɢɣ ɢɥɢ ɩɨɫɥɟɞɭɸɳɢɣ ɷɥɟɦɟɧɬ ɢ ɞɪ
ȼɫɟ ɝɪɭɩɩɵ ɫɬɚɧɞɚɪɬɧɵɯ ɮɭɧɤɰɢɣ ɫɜɟɞɟɧɵ ɜ ɬɚɛɥɢɰɭ
ʋ  | 
	Ɉɛɪɚɳɟɧɢɟ  | 
	ȼɵɩɨɥɧɹɟɦɚɹ  | 
	Ɍɢɩ  | 
	
  | 
||
  | 
	
  | 
	ɉɪɢɦɟɱɚɧɢɟ  | 
||||
  | 
	
  | 
|||||
ɝɪ.  | 
	ɧɚ ɉɚɫɤɚɥɟ  | 
	ɮɭɧɤɰɢɹ  | 
	ɚɪɝɭɦɟțɬɚ  | 
	ɪɟɡɭɥɶɬɚɬɚ  | 
||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
  | 
	Round (x)  | 
	Ɉɤɪɭɝɥɟɧɢɟ ɞɨ  | 
	real  | 
	integer  | 
	Round(26.8)=  | 
|
  | 
	ɛɥɢɠɚɣɲɟɝɨ  | 
|||||
  | 
	
  | 
	27  | 
||||
2  | 
	
  | 
	ɰɟɥɨɝɨ  | 
	
  | 
	
  | 
||
  | 
	
  | 
	
  | 
	
  | 
|||
Trunc (x)  | 
	ȼɵɞɟɥɟɧɢɟ ɰɟɥɨɣ  | 
	real  | 
	integer  | 
	Trunc(26.8)=  | 
||
  | 
||||||
  | 
	
  | 
	ɱɚɫɬɢ ɱɢɫɥɚ  | 
	
  | 
	
  | 
	26  | 
|
