
- •1.1 Полупроводник, виды проводимости в полупроводнике, рекомбинация в полупроводнике.
- •1.2 Образование p–n перехода, его свойства, вольтамперная характеристика.
- •2 Полупроводниковые диоды.
- •2.2 Выпрямительный диод
- •2.3 Высокочастотный диод
- •2.4 Импульсный диод
- •2.5 Стабилитрон
- •2.6 Стабистор
- •2.7 Варикап
- •3. Транзисторы
- •3.1 Типы транзисторов, классификация, маркировка транзисторов
- •3.2 Биполярные транзисторы
- •3.2.2 Схемы включения биполярного транзистора
- •3.2.3 Вольтамперные характеристики биполярного транзистора.
- •3.2.5 Коэффициенты усиления биполярного транзистора.
- •Параметры биполярного транзистора.
- •3.2.8 Составной биполярный транзистор.
- •3.3 Полевой транзистор.
- •3.3.1. Понятие, элементы и типы полевых транзисторов.
- •3.3.3 Условные обозначения и схемы включения полевых транзисторов.
3.2.5 Коэффициенты усиления биполярного транзистора.
Для каждой из схем включения транзисторов наиболее важными параметрами являются коэффициенты усиления по току, напряжению и мощности.
Как отмечалось выше, исходное состояние транзистора определяется выбором режима его работы, который характеризуется протеканием установившихся в нем токов определенной величины и наличием напряжений как на транзисторе, так и на элементах, соединенных с ним. При подаче входного сигнала ранее имевшие место токи и напряжения в транзисторе изменяются в соответствии с изменением входного сигнала. Для исключения влияния положения рабочей точки транзистора на его коэффициенты усиления при их анализе используются не абсолютные значения токов и напряжений, а их приращения. Рассмотрим в общем виде коэффициенты усиления транзистора.
Коэффициентом усиления по току называется отношение приращения тока на выходе к приращению тока на входе:
(5)
Коэффициентом усиления по напряжению называется отношение приращения на выходе к приращению входного напряжения:
(6)
Коэффициентом усиления по мощности называется отношение приращения мощности на выходе к приращению мощности на входе:
(7)
Входным сопротивлением называется отношение приращения входного напряжения к приращению входного тока:
(8)
Выходным сопротивлением называется отношение приращения выходного напряжения к приращению выходного тока:
(9)
Рассмотрим эти параметры для двух схем включения транзистора. На рисунке 3.16 показано включение транзистора по схеме с О.Б. в динамическом режиме.
Рисунок 3.16 – Транзистор, включённый по схеме
с общей базой в динамическом режиме
Здесь с помощью источника E осуществляется установка рабочей точки на транзисторе, Uист – источник усиливаемого сигнала, Uвх – входное напряжение, Uн – выходное напряжение. В этой схеме входным и выходным токами являются соответственно ток эмиттера и коллектора. Тогда, в соответствии с (5) коэффициент усиления по току в схеме с общей базой будет равен:
Исходя из принципа работы транзистора, ток коллектора заметно больше тока базы. Поэтому значения коэффициента усиления в схеме с О.Б. несколько меньше единицы и принято считать, что его значения лежат в интервале 0,9 ÷ 0,99. С целью большего удобства коэффициент усиления по току в схеме с О.Б. обозначают через α:
(10)
В соответствии с (6), определим коэффициент усиления по напряжению в схеме с О.Б.:
Здесь под Rвх,б понимается входное сопротивление транзистора между эмиттером и базой в схеме с О.Б. в динамическом режиме.
В стабилизаторах Rн составляет 10÷100 Ом.
Коэффициент усиления по мощности определяется по формуле (7):
Рассмотрим коэффициенты усиления для транзистора, включенного по схеме с общим эмиттером в динамическом режиме (рисунок 3.17).
Рисунок 3.17 – Включение транзистора по схеме
с общим эмиттером в динамическом режиме
Здесь входной сигнал подаётся на базу относительно эмиттера. Во входной цепи находится напряжение смещения E1 и источник входного сигнала Uист. Выходная цепь состоит из источника E2 и сопротивления нагрузки Rн. Полярность подключения источников такова, чтобы под действием E1 эмиттерный переход был под прямым напряжением, а коллекторный переход под действием E2 находился под обратным напряжением. Как и в предыдущих случаях выполняется условие E2>>E1.
Коэффициент усиления по току определяем по формуле (5), учитывая, что в этой схеме входным током является ток базы, а выходным ток коллектора:
Из-за особой важности коэффициента усиления по току в схеме транзистора с О.Э. этот коэффициент принято обозначать дополнительно к общему обозначению греческой буквой β (бета).
Учитывая, что коэффициент усиления по току в схеме с общей базой изменяется в пределах α=0,9 – 0,99, находим, что β изменяется в пределах:
= 9÷99
Теоретически,
при α → 1, что возможно при
→
0, значение
→ ∞.
Коэффициент усиления по напряжению определяем по формуле (6):
Коэффициент усиления по мощности определим как произведение коэффициентов усиления по току и по напряжению:
Сравнивая коэффициенты усиления для двух рассмотренных схем включения транзистора, видим, что в схеме включения с общим эмиттером коэффициенты усиления на много больше коэффициентов усиления в схеме включения с общей базой. Необходимо отметить, что сомножители (дроби), стоящие в коэффициентах усиления по току и по мощности, мало отличаются по величине. Поэтому понятно, что при построении усилителей сигналов используется включение транзистора по схеме с общим эмиттером.
3.2.6 Эквивалентная схема транзистора.
При расчёте электрических цепей, содержащих транзисторы, в место транзисторов используются их эквивалентная электрическая схема. Для каждого способа включения транзистора имеет место своя эквивалентная схема. Эквивалентные схемы отображают устройство транзистора и его электрические свойства.
Рассмотрим эквивалентную схему транзистора, включённого по схеме с общей зоной. На рисунке 3.18,а показана конструкция транзистора, которая ранее уже рассматривалась и представлена на рисунке 3.1.
Рисунок – 3.18 Эквивалентная схема транзистора, включенного по схеме с
общей базой, без генератора тока (а) и с генератором тока (б)
При
изучении свойств p-n
перехода и принципа действия транзистора
было установлено, что каждый из p-n
переходов обладает определённым
омическим сопротивлением. Омическое
сопротивление эмиттерного перехода
обозначается через
.
Как
известно, одно из условий функционирования
транзистора состоит в том, чтобы
эмиттерный переход был под прямым
напряжением. В этом случае отсутствует
запирающий слой в p-n
переходе, а значит сопротивление его
мало. Поэтому величина
мала и составляет от единиц до десяток
Ом. Так же известно, что p-n
переход характеризуется барьерной
ёмкостью. Барьерная ёмкость эмиттерного
перехода обозначается через
и
в эквивалентной схеме подключается
параллельно
.
Сопротивление
коллекторного перехода обозначаются
через
.
Известно, что коллекторный переход
находится под обратным напряжением,
что создает запирающий слой, обладающий
большим омическим сопротивлением.
Поэтому величина коллекторного
сопротивления велика и составляет сотни
тысяч Ом (сотни кОм). Барьерная ёмкость
коллекторного перехода обозначается
через
и в эквивалентной схеме подключена
параллельно
.
Величина барьерной ёмкости достаточно
велика и составляет сотни пикофарад.
Представленная на рисунок 3.18,а
эквивалентная схема является пассивным
четырёхполюсником и усилительными
свойствами, как транзистор, обладать
не может. Для того, чтобы эквивалентная
схема обладала усилительными свойствами
в неё вводится генератор тока (рисунок
3.18,б). Ток, создаваемый генератором тока,
равен произведению коэффициента усиления
транзистора, включенного по схеме с
общей базой, на величину тока эмиттера,
что равно току коллектора:
Эквивалентная
схема транзистора, включенного по схеме
с общим эмиттером без генератора тока
представлена на рисунке 3.19,а. Назначение
элементов ()
Рисунок – 3.19 Эквивалентная схема транзистора, включенного по схеме с общей
базой, без генератора тока (а) и с генератором тока (б)
такое
же, как и в схеме с общей базой. Однако,
как было сказано, транзистор обладает
усилительными свойствами, поэтому
эквивалентная схема дополняется
генератором тока
(рисунок
3.19,б). Ток, создаваемый генератором тока,
равен произведению коэффициента усиления
транзистора, включенного по схеме с
О.Э., на величину тока базы, что равно
коллекторному току: