
- •Федеральное агентство по образованию
- •Предмет курса «Электромагнетизм».
- •Основные понятия и законы. Электрический заряд и его свойства.
- •Взаимодействие заряженных частиц. Закон Кулона (1785г).
- •Электрическое поле неподвижного точечного заряда.
- •Принцип суперпозиции для напряжённости.
- •Электрическое поле точечного диполя.
- •Особенности расчёта напряжённости электрического поля при непрерывном пространственном распределении заряда.
- •Электрическое поле на оси равномерно заряженного тонкого кольца.
- •Электрическое поле на оси равномерно заряженного круга.
- •Электрическое поле равномерно заряженной нити ().
- •Частные случаи.
- •Теорема Гаусса.
- •Применение теоремы Гаусса.
- •Теорема о циркуляции вектора электростатического поля. Понятие потенциала.
- •Понятие потенциала.
- •Потенциал поля точечного заряда.
- •Потенциал поля системы зарядов.
- •Связь между потенциалом и вектором.
- •Эквипотенциальные поверхности.
- •Проводник в электрическом поле.
- •Поле внутри и снаружи проводника.
- •Поле у поверхности проводника.
- •Силы, действующие на поверхность проводника.
- •Свойства замкнутой проводящей оболочки.
- •Общая задача электростатики.
- •Понятие электроемкости. Конденсаторы.
- •Конденсаторы.
- •Ёмкость плоского конденсатора.
- •Ёмкость сферического конденсатора.
- •Вектор поляризации (поляризованность).
- •Поле в диэлектрике.
- •Диэлектрическая восприимчивость и её связь с диэлектрической проницаемостью.
- •Вектор электрической индукции .
- •Физические условия на границе раздела диэлектриков.
- •Энергия электрического поля.
- •Работа поля при поляризации диэлектрика.
- •Электрическая энергия системы зарядов.
- •Примеры.
- •Постоянный ток. Электрический ток.
- •Сила тока.
- •Плотность тока.
- •Закон Ома для однородного проводника.
- •Закон Ома в дифференциальной форме.
- •Закон Ома для участка, содержащего сторонние силы.
- •Закон Ома в интегральной форме для участка, содержащего источник тока.
- •Закон Ома для замкнутой цепи.
- •Соединение проводников.
- •Закон Джоуля - Ленца.
- •Разветвленные цепи. Правила Кирхгофа.
- •Примеры и задачи для самостоятельного решения.
- •Магнетизм. Магнитное поле.
- •Графическое изображение постоянного магнитного поля.
- •Примеры движения заряженных частиц в электромагнитном поле.
- •Задачи для самостоятельного решения.
- •Закон Био-Савара-Лапласа и принцип суперпозиции.
- •Принцип суперпозиции для вектора .
- •Магнитное поле в веществе (предварительные сведения).
- •Примеры расчета магнитных полей постоянных токов.
- •Задачи для самостоятельного решения.
- •Основные законы магнитного поля. Теорема Гаусса для вектора .
- •Теорема о циркуляции вектора .
- •Применение теоремы о циркуляции вектора .
- •Задачи для самостоятельного решения.
- •Сила Ампера. Закон Ампера.
- •Момент сил, действующий на контур с током.
- •Работа по перемещению контура с током в постоянном магнитном поле.
- •Взаимодействие токов.
- •Примеры
- •Задачи для самостоятельного решения.
- •Вещество в магнитном поле.
- •Вектор напряженности магнитного поля . Теорема о циркуляции вектора .
- •Связь между и,и.
- •Применение теоремы о циркуляции .
- •Электромагнетизм. Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.
- •Природа сторонних сил в явлении электромагнитной индукции.
- •Явление самоиндукции.
- •Энергия магнитного поля.
- •Примеры проявления самоиндукции.
- •Явление взаимной индукции. Взаимная индуктивность. Эдс взаимной индукции.
- •Явление магнитоэлектрической индукции. Токи смещения.
- •Теорема полного тока.
- •Уравнения Максвелла в интегральной форме.
Ёмкость плоского конденсатора.
Плоский конденсатор состоит из двух
параллельных пластин, разделённых
небольшим зазором шириной
,
заполненным однородным диэлектриком.
Нам известно, что поле между двумя
разноимённо заряженными пластинами с
одинаковой по величине поверхностной
плотностью
равно
,
где
,S– площадь каждой пластины.
Напряжение между обкладками:
.
Используя определение емкости конденсатора, получаем:
Отметим, что полученная формула является
приближенной, так как выведена без учета
искажения поля у краев пластин. Расчет
по этой формуле дает завышенное значение
ёмкости и тем точнее, чем меньше зазор
по сравнению с линейными размерами
пластин
.
Ёмкость сферического конденсатора.
Сферический
конденсатор представляет собой систему
двух концентрических сфер с радиусами
и
.
Электрическое поле между обкладками
сферического конденсатора согласно
теореме Гаусса определяется зарядом
внутренней сферы. Напряжение между
обкладками равно:
.
Для ёмкости сферического конденсатора получаем:
.
Это формула точная.
Если
,
полученная формула переходит в выражение
для ёмкости плоского конденсатора.
Ёмкость цилиндрического конденсатора.
Цилиндрический конденсатор составляет
систему двух коаксиальных цилиндров с
радиусами
и
,
длиной
.
Рассуждая аналогично выводу ёмкости сферического конденсатора, получаем:
.
.
Полученная формула является приближенной
и при малом зазоре
переходит в формулу емкости плоского
конденсатора.
Соединение конденсаторов.
В практике для получения необходимых значений емкости используют соединения конденсаторов: а) последовательное, б) параллельное, в) смешанное (см. рисунок).
Ёмкость последовательного соединения конденсаторов.
Заряды последовательно соединенных
конденсаторов равны
,
а напряжение на батарее
.
Из определения емкости следует:
или
.
Если
,
то
(ёмкость последовательного соединения
меньше наименьшей ёмкости в последовательном
соединении).
Для
последовательно соединенных конденсаторов
емкость вычисляется по формуле:
.
В случае одинаковых конденсаторов:
.
Ёмкость параллельного соединения конденсаторов.
Заряд батареи равен сумме зарядов:
,
а напряжение
.
По определению емкости получаем:
.
Для
параллельно соединенных конденсаторов:
.
В случае одинаковых конденсаторов:
.
Пример.
Оценить
емкость батареи (см. рисунок)
.
.
Ответ:.
Используя свойство бесконечности можно представить цепь в виде соединения (см. рисунок).
Для
расчета ёмкости батареи получаем:
,
.
Откуда:
,
так как
,
то
.
Лекция 7.
Диэлектрики в электрическом поле.
Диэлектриками (изоляторами) называют вещества, не проводящие постоянного электрического тока. Это означает, что в диэлектриках отсутствуют «свободные» заряды, способные перемещаться на значительные расстояния.
Диэлектрики состоят либо из нейтральных молекул, либо из ионов, находящихся в узлах кристаллической решетки. Сами же молекулы могут быть полярнымиинеполярными.Полярные молекулы обладают дипольным моментом, у неполярных молекул дипольный момент равен нулю.
Поляризация.
В электрическом поле диэлектрики поляризуются. Это явление связано с появлением в объеме и на поверхности диэлектрика «связанных» зарядов. При этом конечный объем диэлектрика приобретает дипольный момент. Механизм поляризации связан с конкретным строением диэлектрика. Если диэлектрик состоит из неполярных молекул, то в пределах каждой молекулы происходит смещение зарядов – положительных по полю, отрицательных против поля, т.е. молекулы, приобретают дипольный момент. У диэлектрика с полярными молекулами в отсутствии внешнего электрического поля их дипольные моменты ориентированы хаотично.
Под
действием электрического поля диполи
ориентируются преимущественно в
направлении поля. Рассмотрим подробнее
этот механизм (см. рисунок). Пара сил
и
создает
вращательный момент равный
,
где
-
дипольный момент молекулы. Этот момент
стремится ориентировать диполь вдоль
поля. В ионных кристаллах под действием
электрического поля все положительные
ионы смещаются по полю, отрицательные
– против поля. Отметим, что смещение
зарядов очень малы даже по сравнению с
размерами молекул. Это связано с тем,
что напряженность внешнего электрического
поля обычно много меньше напряженности
внутренних электрических полей в
молекулах.
Отметим, что существуют диэлектрики,
поляризованные даже при отсутствии
внешнего поля (электреты, сегнетоэлектрики).
Мы остановимся на рассмотрении только
однородных диэлектриков, в которых
отсутствует остаточная поляризация, а
объемный и «связанный» заряд всегда
равен нулю
.