
Физика. Экзамен / Физика. Экзамен / Ответы(2) / Вопрос 10
.docxВопрос 10
Поле внутри проводника и его поверхности. Распределение зарядов в проводнике. Метод изображений.
а) Электростатическое поле внутри проводника - внутри проводника электростатического поля нет ( Е = 0 ), что справедливо для заряженного проводника и для незаряженного проводника, внесенного во внешнее электростатическое поле. Если проводник поместить во внешнее электростатическое поле или зарядить его, то на заряды данного проводника будет действовать электростатическое поле, под действием которого они начнут двигаться. Движение зарядов (ток) будет длиться до тех пор, пока не установится равновесное распределение зарядов, при котором электростатическое поле внутри данного проводника обращается в нуль. Это происходит в течение очень короткого времени. Действительно, если бы поле не было равно нулю, то в проводнике появилось бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что не согласуется с законом сохранения энергии. Значит, напряженность поля во всех точках внутри проводника равна нулю:
Если внутри проводника электрического поле отсутствует, то потенциал во всех точках внутри проводника одинаков (φ = const), т. е. поверхность проводника в электростатическом поле является эквипотенциальной. Это означает, что вектор напряженности поля на внешней поверхности проводника направлен по перпендикуляру к каждой точке его поверхности. Если это было бы не так, то под действием касательной составляющей Е заряды начали бы перемещаться по поверхности проводника, что, в свою очередь, противоречило бы равновесному распределению зарядов.
Если проводнику дать некоторый дополнительный заряд Q, то нескомпенсированные заряды разместяться только на поверхности проводника. Это вытекает непосредственно из теоремы Гаусса, согласно которой заряд Q, который находится внутри проводника в некотором объеме, ограниченном произвольной замкнутой поверхностью, равен
поскольку во всех точках внутри замкнутой поверхности D=0.
Теперь мы будем искать взаимосвязь между напряженностью Е поля вблизи поверхности заряженного проводника и поверхностной плотностью зарядов на его поверхности σ . Для этого используем теорему Гаусса для бесконечно малого цилиндра с основаниями ΔS, который пересекает границу проводник—диэлектрик. Ось цилиндра направлена вдоль вектора Е (рис. 1). Поток вектора электрического смещения через внутреннюю часть цилиндрической поверхности равен нулю, так как внутри проводника Е1 (а следовательно, и D1) есть нуль, поэтому поток вектора D сквозь замкнутую цилиндрическую поверхность определяется только потоком сквозь наружное основание цилиндра. Используя теорему Гаусса, этот поток (DΔS) равен сумме зарядов (Q=σΔS), находящихся внутри поверхности: DΔS=σΔS т.е.
где ε — диэлектрическая проницаемость среды, находящаяся вокруг проводника.
Значит, напряженность электростатического поля у поверхности проводника задается поверхностной плотностью зарядов.
б) Для того чтобы ответить на вопрос о распределении заряда в проводнике, нам надо уточнить некоторые свойства силовых линий электростатического поля. Напомним, что силовая линия электрического поля (в том числе и электростатического) — это воображаемая линия в пространстве, проведенная так, чтобы касательная к ней в каждой точке совпадала с вектором напряженности электрического поля в этой точке. Опыт изучения электростатических полей дает основание заключить, что силовые линии этих полей непрерывны и не замкнуты, они могут начинаться только на положительных зарядах и оканчиваться только на отрицательных и не могут начинаться (заканчиваться) в точке пространства, где нет зарядов. При графическом изображении поля некоторой системы зарядов число силовых линий, начинающихся или заканчивающихся на каком-либо заряде, пропорционально модулю этого заряда. Отсюда следует, что из любого заряда обязательно выходят (или входят в него) силовые линии.
После сказанного о силовых линиях возвратимся к вопросу о распределении заряда в проводнике. Выделим мысленно произвольный достаточно малый объем ΔV внутри проводника (рис. 1). Предположим, что этот объем имеет заряд (для определенности, положительный). Тогда из выделенного объема будут выходить силовые линии, т. е. вблизи него будет существовать электрическое поле. Но поля внутри проводника нет. Поэтому выделенный объем должен быть нейтрален. А поскольку этот объем взят нами в произвольном месте внутри проводника, то можно утверждать, что вся «внутренность» проводника нейтральна и, следовательно, весь заряд проводника находится на его поверхности.
в) Суть метода изображений состоит в том, что исходная задача отыскания поля заданных (сторонних) источников в присутствии граничных поверхностей сводится к расчёту поля тех же и некоторых добавочных (фиктивных) источников в безграничной среде, которые помещаются вне области отыскания поля исходной задачи. Эти добавочные источники называются источниками-изображениями. Правила их построения полностью аналогичны тем, по которым строятся изображения точечных источников в оптике в системе зеркал (здесь зеркала повторяют форму граничных поверхностей). Величины источников-изображений определяются граничными условиями на поверхностях, а также требованиями одинаковости поля, создаваемого реальной системой источников и поверхностей, и системой, составленной из действительных источников и фиктивных источников-изображений в пространстве вблизи действительных источников.
В электростатике метод позволяет легко рассчитать распределение электрического поля в объёме между совокупностью электрических зарядов и проводящими поверхностями определённой формы, а также между электрическими зарядами и диэлектрическими поверхностями.