
- •§1. Несколько вводных замечаний о предмете физики.
- •§2. Механика
- •2.2. Кинематика движения материальной точки. Характеристики движения.
- •2.3. Вектор скорости. Средняя и мгновенная скорость.
- •2.4. Путь при неравномерном движении.
- •2.6. Криволинейное движение.
- •2.6.1. Ускорение при криволинейном движении (тангенциальное и нормальное ускорение).
- •2.7. Кинематика вращательного движения.
- •2.7.1. Угловая скорость.
- •2.7.2. Угловое ускорение.
- •2.7.3. Связь между линейной и угловой скоростью.
- •§3. Динамика
- •3.2. IIзакон Ньютона.
- •3.3. IiIзакон Ньютона.
- •3.4. Импульс. Закон сохранения импульса.
- •3.5. Работа и энергия.
- •3.6. Мощность.
- •3.7. Энергия.
- •3.8. Кинетическая энергия тела.
- •3.9. Потенциальное поле сил. Силы консервативные и неконсервативные.
- •3.10. Потенциальная энергия тела в поле сил тяжести (в поле тяготения Земли).
- •3.11. Потенциальная энергия в гравитационном поле (в поле всемирного тяготения).
- •3.12. Потенциальная энергия упруго деформированного тела.
- •3.13. Закон сохранения энергии.
- •§4. Механика твердого тела.
- •4.1. Поступательное движение твердого тела.
- •4.2. Вращательное движение твердого тела.
- •4.3. Момент импульса тела.
- •4.4. Закон сохранения момента импульса.
- •4.5. Основное уравнение динамики вращательного движения.
- •4.6. Кинетическая энергия вращающегося твердого тела.
- •4.7. Работа внешних сил при вращательном движении твердого тела.
- •§5. Гидродинамика
- •5.1. Линии и трубки тока.
- •5.2. Уравнение Бернулли.
- •5.3. Силы внутреннего трения.
- •5.4. Ламинарное и турбулентное течения.
- •5.5. Течение жидкости в круглой трубе.
- •5.6. Движение тел в жидкостях и газах.
- •§6. Всемирное тяготение.
- •6.1. Законы Кеплера.
- •6.2. Опыт Кавендиша.
- •6.3. Напряженность гравитационного поля. Потенциал гравитационного поля.
- •§7. Основы теории относительности.
- •7.1. Принцип относительности.
- •7.2. Постулаты специальной (частной) теории относительности. Преобразования Лоренца
- •7.3. Следствия из преобразований Лоренца.
- •7.4. Интервал между событиями.
- •§8. Колебания.
- •8.1. Общие сведения.
- •8.2. Уравнение гармонического колебательного движения.
- •8.3. Графическое изображение гармонических колебаний. Векторная диаграмма.
- •8.4. Скорость, ускорение и энергия колеблющегося тела.
- •8.5. Гармонический осциллятор.
- •8.6. Малые колебания системы вблизи положения равновесия.
- •8.7. Математический маятник.
- •8.8. Физический маятник.
- •8.9. Затухающие колебания.
- •8.10. Вынужденные колебания. Резонанс.
- •Молекулярная физика и термодинамика §9. Молекулярная физика
- •9.1. Предмет и методы молекулярной физики.
- •9.2. Термодинамическая система. Параметры состояния системы. Равновесное и неравновесное состояние.
- •9.2.1. Идеальный газ. Параметры состояния идеального газа.
- •9.2.2. Газовые законы.
- •9.2.3. Закон Авогадро.
- •9.2.4. Уравнение состояния идеального газа (уравнение Менделеева Клапейрона).
- •Физический смысл универсальной газовой постоянной.
- •9.2. Основное уравнение кинетической теории газов
- •9.3. Барометрическая формула. Распределение Больцмана
- •9.4. Максвелловское распределение молекул по скоростям
- •9.5. Явления переноса. Длина свободного пробега молекул
- •9.6. Явление диффузии
- •9.7. Явление теплопроводности и вязкости
- •§10. Термодинамика
- •10.1. Внутренняя энергия идеального газа
- •10.2. Работа и теплота. Первое начало термодинамики
- •10.3. Работа газовых изопроцессов
- •10.4. Молекулярно-кинетическая теория теплоемкостей
- •10.5. Адиабатический процесс
- •10.6. Круговые обратимые процессы. Цикл Карно
- •10.7. Понятие об энтропии. Энтропия идеального газа
- •10.8. Второе начало термодинамики
- •10.9. Статистическое толкование второго начала термодинамики
- •§11. Реальные газы
- •11.1. Уравнение Ван-дер-Ваальса
- •11.2. Критическое состояние вещества
- •11.3. Эффект Джоуля-Томсона
9.3. Барометрическая формула. Распределение Больцмана
Давно
известно, что давление газа над
поверхностью Земли уменьшается с
высотой. Атмосферное давление на
некоторой высотеhобусловлено весом
вышележащих слоев воздуха. Пусть на
высотеhдавление равноp . Тогда
на высотеh + dh давление будет равноp + dp(рис.9.3). Разность давленийdp=dF/S, гдеdF =Sdhg
вес столба воздуха в объемеSdh ,S- площадь основания цилиндра,- плотность воздуха,g - ускорение
земного притяжения. Отсюда получим
dp = -·g·dh. (9.11)
Знак минус показывает,
что давление убывает с высотой. В этом
выражении кроме p иh есть еще
одна переменная
= m·n , гдеm - масса одной молекулы,n- число молекул в единице объема.
Подставляя сюда
выражение дляn из формулы (9.7), получим
= mp/(kT).
Подставляя это выражение в формулу
(9.11), получим
dp/p = - mgdh /(kT). (9.12)
Получили дифференциальное уравнение для p как функции отh . ПоложимT = const . Суммируя всеdp/p в пределах отpo доp, при соответствующем суммировании правой части, когда высота изменяется от0доh , приходим к определенным интегралам:
= -
После интегрирования получим ln(p/po)= -mgh/(kT). Потенцируя, получим
p = poexp[-mgh/(kT)] . (9.13)
Эта формула характеризует зависимость давления от высоты, и поэтому называется барометрической. Приборы, принцип действия которых основан на этой формуле, позволяют измерять высоту по давлению, которое существует на данной высоте. Эти приборы называются альтиметрами. Их применяют, например, в авиации.
В показатель экспоненты (9.13) входит масса молекулы. Следовательно, концентрация более тяжелых молекул будет с высотой убывать быстрее. Поэтому на больших высотах уменьшается процентное содержание кислорода по сравнению с азотом. Летчики, летающие на очень больших высотах, часто пользуются кислородными масками. Спад концентрации молекул с высотой зависит также от g(от массы планеты). Чем меньшеg , тем дальше от планеты уходит газ и в конце концов ее покидает, Поэтому на малых планетах, например на Луне, атмосферы нет. На планетах с большимg, например, на Юпитере, где температура атмосферы близка к абсолютному нулю, молекулы атмосферы расположены практически слоем, напоминающим земной океан.
Барометрическая формула является частным случаем распределения Больцмана. Согласно формуле (9.7) давление пропорционально концентрации молекул n . Поэтому формулу (9.13) можно представить в следующем виде
n = noexp[-mgh /(kT)], (9.14)
где no - число молекул в единице объема приh=0. На разной высоте молекула обладает различным запасом потенциальной энергииEп = mgh . ВводяEпв формулу (9.14), получим
n = noexp[-Eп /(kT)]. (9.15)
Больцман показал, что распределение (9.15) справедливо не только в поле земного тяготения, но и в любом потенциальном поле любых сил для совокупности любых одинаковых частиц, находящихся в тепловом движении. В соответствии с этим распределение (9.15) называют распределением Больцмана(по имени выдающегося австрийского физика, получившего его в 1896 г.). Центробежное потенциальное поле сил, намного превышающих силы земного притяжения, возникает в центрифугах. Распределение (9.15) позволяет рассчитать распределение частиц в этом поле и затем провести оптимально разделение по слоям изотопов различных элементов, мельчайших шлиф-порошков и т.д.
ЛЕКЦИЯ 14 |