
- •Информационное обеспечение систем управления
- •1. Информационные системы и базы данных (лекция 1)
- •1.1. Понятие информационной системы, информационное обеспечение
- •1.2. Понятие базы данных
- •1.3. Понятие системы управления базами данных
- •1.3.1. Обобщенная архитектура субд
- •Предметная область
- •1.3.2. Достоинства и недостатки субд
- •1.4. Категории пользователей базой данных
- •1.4.1. Общая классификация пользователей бд
- •1.4.2. Администратор базы данных
- •1.4.3. Разделение функций администрирования
- •2. Проектирование баз данных (лекция 2)
- •2.1. Жизненный цикл информационной системы
- •2.2. Подходы и этапы проектирования баз данных
- •2.2.1. Цели и подходы к проектированию баз данных
- •«Описание предметной области» ↔ «схема внутренней модели базы данных».
- •2.2.2. Этапы проектирования баз данных
- •3. Архитектуры субд (лекции 3-4)
- •3.1. Телеобработка
- •3.2. Файловый сервер
- •3.3. Технология «клиент/сервер»
- •3.4. Понятие независимости данных
- •4. Инфологическое проектирование базы данных (лекции 5-6)
- •4.1. Модель «сущность-связь»
- •4.2. Классификация сущностей, расширение er-модели
- •4.3. Проблемы er-моделирования
- •5. Выбор субд (лекция 7)
- •5.1. Метод ранжировки
- •5.2. Метод непосредственных оценок
- •5.3. Метод последовательных предпочтений
- •5.4. Оценка результатов экспертного анализа
- •6. Даталогические модели данных (лекции 8-9)
- •6.1. Иерархическая модель
- •6.2. Сетевая модель
- •6.3. Реляционная модель
- •6.4. Достоинства и недостатки даталогических моделей
- •7. Физическая организация данных в субд (лекции 10-11)
- •7.1. Списковые структуры
- •7.1.1. Последовательное распределение памяти
- •7.1.2. Связанное распределение памяти
- •7.2. Модель внешней памяти
- •7.3. Методы поиска и индексирования данных
- •7.3.1. Последовательный поиск
- •7.3.2. Бинарный поиск
- •7.3.3. Индекс - «бинарное дерево»
- •7.3.4. Неплотный индекс
- •7.3.5. Плотный индекс
- •3.3.6. Инвертированный файл
- •8. Внутренний язык субд (лекции 12-13)
- •8.1. Теоретические языки запросов
- •8.1.1. Реляционная алгебра
- •8.1.2. Реляционное исчисление кортежей
- •8.1.3. Реляционное исчисление доменов
- •8.1.4. Сравнение теоретических языков
- •8.2. Определение реляционной полноты
- •8.3. Введение в язык sql
- •8.3.1. Краткая история языка sql
- •8.3.2. Структура языка sql
- •8.3.3. Типы данных sql
- •9. Распределенные базы данных и субд (лекция 14)
- •9.1. Основные определения, классификация распределенных систем
- •9.2. Преимущества и недостатки распределенных субд
- •9.3. Функции распределенных субд
- •9.4. Архитектура распределенных субд
- •9.5. Разработка распределенных реляционных баз данных
- •9.5.1. Распределение данных
- •9.5.2. Фрагментация
- •9.5.3. Репликация
- •9.5.3.1. Виды репликации
- •9.5.3.2. Функции службы репликации
- •9.5.3.3. Схемы владения данными
- •9.5.3.4. Сохранение целостности транзакций
- •9.5.3.5. Моментальные снимки таблиц
- •9.5.3.6. Триггеры базы данных
- •9.5.3.7. Выявление и разрешение конфликтов
- •9.6. Обеспечение прозрачности
- •9.6.1. Прозрачность распределенности
- •9.6.2. Прозрачность транзакций
- •9.6.3. Прозрачность выполнения
- •9.6.4. Прозрачность использования
- •10. Защита и секретность данных. (лекции 15-16)
- •10.1. Понятие информационной безопасности. Основные составляющие
- •10.1.1. Понятие информационной безопасности
- •10.1.2. Основные составляющие информационной безопасности
- •10.2. Распространение объектно-ориентированного подхода на информационную безопасность
- •10.2.1. Основные понятия объектно-ориентированного подхода
- •10.2.2. Применение объектно-ориентированного подхода к рассмотрению защищаемых систем
- •10.3. Наиболее распространенные угрозы
- •10.3.1. Основные определения и критерии классификации угроз
- •10.3.2. Наиболее распространенные угрозы доступности
- •10.3.3. Некоторые примеры угроз доступности
- •10.3.4. Основные угрозы целостности
- •10.3.5. Основные угрозы конфиденциальности
- •10.4. Административный уровень информационной безопасности
- •10.4.1. Основные понятия
- •10.4.2. Политика безопасности
- •10.4.3. Программа безопасности
- •10.5. Управление рисками
- •10.5.1. Основные понятия
- •10.5.2. Подготовительные этапы управления рисками
- •10.5.3. Основные этапы управления рисками
- •10.6. Процедурный уровень информационной безопасности
- •10.6.1.Основные классы мер процедурного уровня
- •10.6.2. Управление персоналом
- •10.6.3. Физическая защита
- •10.6.4. Поддержание работоспособности
- •10.6.5. Реагирование на нарушения режима безопасности
- •10.6.6. Планирование восстановительных работ
- •10.7. Основные программно-технические меры
- •10.7.1. Основные понятия программно-технического уровня информационной безопасности
- •10.7.2. Особенности современных информационных систем, существенные с точки зрения безопасности
- •10.7.3. Архитектурная безопасность
10.7. Основные программно-технические меры
10.7.1. Основные понятия программно-технического уровня информационной безопасности
Программно-технические меры, то есть меры, направленные на контроль компьютерных сущностей — оборудования, программ и/или данных, образуют последний и самый важный рубеж информационной безопасности. Напомним, что ущерб наносят в основном действия легальных пользователей, по отношению к которым процедурные регуляторы малоэффективны. Главные враги — некомпетентность и неаккуратность при выполнении служебных обязанностей, и только программно-технические меры способны им противостоять.
Компьютеры помогли автоматизировать многие области человеческой деятельности. Вполне естественным представляется желание возложить на них и обеспечение собственной безопасности. Даже физическую защиту все чаще поручают не охранникам, а интегрированным компьютерным системам, что позволяет одновременно отслеживать перемещения сотрудников и по организации, и по информационному пространству.
Следует, однако, учитывать, что быстрое развитие информационных технологий не только предоставляет обороняющимся новые возможности, но и объективно затрудняет обеспечение надежной защиты, если опираться исключительно на меры программно-технического уровня. Причин тому несколько:
повышение быстродействия микросхем, развитие архитектур с высокой степенью параллелизма позволяет методом грубой силы преодолевать барьеры (прежде всего криптографические), ранее казавшиеся неприступными;
развитие сетей и сетевых технологий, увеличение числа связей между информационными системами, рост пропускной способности каналов расширяют круг злоумышленников, имеющих техническую возможность организовывать атаки;
появление новых информационных сервисов ведет и к образованию новых уязвимых мест как "внутри" сервисов, так и на их стыках;
конкуренция среди производителей программного обеспечения заставляет сокращать сроки разработки, что приводит к снижению качества тестирования и выпуску продуктов с дефектами защиты;
навязываемая потребителям парадигма постоянного наращивания мощности аппаратного и программного обеспечения не позволяет долго оставаться в рамках надежных, апробированных конфигураций и, кроме того, вступает в конфликт с бюджетными ограничениями, из-за чего снижается доля ассигнований на безопасность.
Перечисленные соображения лишний раз подчеркивают важность комплексного подхода к информационной безопасности, а также необходимость гибкой позиции при выборе и сопровождении программно-технических регуляторов.
Центральным для программно-технического уровня является понятие сервиса безопасности.
Следуя объектно-ориентированному подходу, при рассмотрении информационной системы с единичным уровнем детализации мы увидим совокупность предоставляемых ею информационных сервисов. Назовем их основными. Чтобы они могли функционировать и обладали требуемыми свойствами, необходимо несколько уровней дополнительных (вспомогательных) сервисов — от СУБД и мониторов транзакций до ядра операционной системы и оборудования.
К вспомогательным относятся сервисы безопасности (мы уже сталкивались с ними при рассмотрении стандартов и спецификаций в области ИБ); среди них нас в первую очередь будут интересовать универсальные, высокоуровневые, допускающие использование различными основными и вспомогательными сервисами. Далее мы рассмотрим следующие сервисы:
идентификация и аутентификация;
управление доступом;
протоколирование и аудит;
шифрование;
контроль целостности;
экранирование;
анализ защищенности;
обеспечение отказоустойчивости;
обеспечение безопасного восстановления;
туннелирование;
управление.
Для проведения классификации сервисов безопасности и определения их места в общей архитектуре меры безопасности можно разделить на следующие виды:
превентивные, препятствующие нарушениям ИБ;
меры обнаружения нарушений;
локализующие, сужающие зону воздействия нарушений;
меры по выявлению нарушителя;
меры восстановления режима безопасности.
Большинство сервисов безопасности попадает в число превентивных, и это, безусловно, правильно. Аудит и контроль целостности способны помочь в обнаружении нарушений; активный аудит, кроме того, позволяет запрограммировать реакцию на нарушение с целью локализации и/или прослеживания. Направленность сервисов отказоустойчивости и безопасного восстановления очевидна. Наконец, управление играет инфраструктурную роль, обслуживая все аспекты ИС.