
- •Информационное обеспечение систем управления
- •1. Информационные системы и базы данных (лекция 1)
- •1.1. Понятие информационной системы, информационное обеспечение
- •1.2. Понятие базы данных
- •1.3. Понятие системы управления базами данных
- •1.3.1. Обобщенная архитектура субд
- •Предметная область
- •1.3.2. Достоинства и недостатки субд
- •1.4. Категории пользователей базой данных
- •1.4.1. Общая классификация пользователей бд
- •1.4.2. Администратор базы данных
- •1.4.3. Разделение функций администрирования
- •2. Проектирование баз данных (лекция 2)
- •2.1. Жизненный цикл информационной системы
- •2.2. Подходы и этапы проектирования баз данных
- •2.2.1. Цели и подходы к проектированию баз данных
- •«Описание предметной области» ↔ «схема внутренней модели базы данных».
- •2.2.2. Этапы проектирования баз данных
- •3. Архитектуры субд (лекции 3-4)
- •3.1. Телеобработка
- •3.2. Файловый сервер
- •3.3. Технология «клиент/сервер»
- •3.4. Понятие независимости данных
- •4. Инфологическое проектирование базы данных (лекции 5-6)
- •4.1. Модель «сущность-связь»
- •4.2. Классификация сущностей, расширение er-модели
- •4.3. Проблемы er-моделирования
- •5. Выбор субд (лекция 7)
- •5.1. Метод ранжировки
- •5.2. Метод непосредственных оценок
- •5.3. Метод последовательных предпочтений
- •5.4. Оценка результатов экспертного анализа
- •6. Даталогические модели данных (лекции 8-9)
- •6.1. Иерархическая модель
- •6.2. Сетевая модель
- •6.3. Реляционная модель
- •6.4. Достоинства и недостатки даталогических моделей
- •7. Физическая организация данных в субд (лекции 10-11)
- •7.1. Списковые структуры
- •7.1.1. Последовательное распределение памяти
- •7.1.2. Связанное распределение памяти
- •7.2. Модель внешней памяти
- •7.3. Методы поиска и индексирования данных
- •7.3.1. Последовательный поиск
- •7.3.2. Бинарный поиск
- •7.3.3. Индекс - «бинарное дерево»
- •7.3.4. Неплотный индекс
- •7.3.5. Плотный индекс
- •3.3.6. Инвертированный файл
- •8. Внутренний язык субд (лекции 12-13)
- •8.1. Теоретические языки запросов
- •8.1.1. Реляционная алгебра
- •8.1.2. Реляционное исчисление кортежей
- •8.1.3. Реляционное исчисление доменов
- •8.1.4. Сравнение теоретических языков
- •8.2. Определение реляционной полноты
- •8.3. Введение в язык sql
- •8.3.1. Краткая история языка sql
- •8.3.2. Структура языка sql
- •8.3.3. Типы данных sql
- •9. Распределенные базы данных и субд (лекция 14)
- •9.1. Основные определения, классификация распределенных систем
- •9.2. Преимущества и недостатки распределенных субд
- •9.3. Функции распределенных субд
- •9.4. Архитектура распределенных субд
- •9.5. Разработка распределенных реляционных баз данных
- •9.5.1. Распределение данных
- •9.5.2. Фрагментация
- •9.5.3. Репликация
- •9.5.3.1. Виды репликации
- •9.5.3.2. Функции службы репликации
- •9.5.3.3. Схемы владения данными
- •9.5.3.4. Сохранение целостности транзакций
- •9.5.3.5. Моментальные снимки таблиц
- •9.5.3.6. Триггеры базы данных
- •9.5.3.7. Выявление и разрешение конфликтов
- •9.6. Обеспечение прозрачности
- •9.6.1. Прозрачность распределенности
- •9.6.2. Прозрачность транзакций
- •9.6.3. Прозрачность выполнения
- •9.6.4. Прозрачность использования
- •10. Защита и секретность данных. (лекции 15-16)
- •10.1. Понятие информационной безопасности. Основные составляющие
- •10.1.1. Понятие информационной безопасности
- •10.1.2. Основные составляющие информационной безопасности
- •10.2. Распространение объектно-ориентированного подхода на информационную безопасность
- •10.2.1. Основные понятия объектно-ориентированного подхода
- •10.2.2. Применение объектно-ориентированного подхода к рассмотрению защищаемых систем
- •10.3. Наиболее распространенные угрозы
- •10.3.1. Основные определения и критерии классификации угроз
- •10.3.2. Наиболее распространенные угрозы доступности
- •10.3.3. Некоторые примеры угроз доступности
- •10.3.4. Основные угрозы целостности
- •10.3.5. Основные угрозы конфиденциальности
- •10.4. Административный уровень информационной безопасности
- •10.4.1. Основные понятия
- •10.4.2. Политика безопасности
- •10.4.3. Программа безопасности
- •10.5. Управление рисками
- •10.5.1. Основные понятия
- •10.5.2. Подготовительные этапы управления рисками
- •10.5.3. Основные этапы управления рисками
- •10.6. Процедурный уровень информационной безопасности
- •10.6.1.Основные классы мер процедурного уровня
- •10.6.2. Управление персоналом
- •10.6.3. Физическая защита
- •10.6.4. Поддержание работоспособности
- •10.6.5. Реагирование на нарушения режима безопасности
- •10.6.6. Планирование восстановительных работ
- •10.7. Основные программно-технические меры
- •10.7.1. Основные понятия программно-технического уровня информационной безопасности
- •10.7.2. Особенности современных информационных систем, существенные с точки зрения безопасности
- •10.7.3. Архитектурная безопасность
10.3.2. Наиболее распространенные угрозы доступности
Самыми частыми и самыми опасными (с точки зрения размера ущерба) являются непреднамеренные ошибки штатных пользователей, операторов, системных администраторов и других лиц, обслуживающих информационные системы.
Иногда такие ошибки и являются собственно угрозами (неправильно введенные данные или ошибка в программе, вызвавшая крах системы), иногда они создают уязвимые места, которыми могут воспользоваться злоумышленники (таковы обычно ошибки администрирования). По некоторым данным, до 65% потерь — следствие непреднамеренных ошибок.
Пожары и наводнения не приносят столько бед, сколько безграмотность и небрежность в работе.
Очевидно, самый радикальный способ борьбы с непреднамеренными ошибками — максимальная автоматизация и строгий контроль.
Другие угрозы доступности классифицируем по компонентам ИС, на которые нацелены угрозы:
1) отказ пользователей;
2) внутренний отказ информационной системы;
3) отказ поддерживающей инфраструктуры.
Обычно применительно к пользователям рассматриваются следующие угрозы:
1) нежелание работать с информационной системой (чаще всего проявляется при необходимости осваивать новые возможности и при расхождении между запросами пользователей и фактическими возможностями и техническими характеристиками);
2) невозможность работать с системой в силу отсутствия соответствующей подготовки (недостаток общей компьютерной грамотности, неумение интерпретировать диагностические сообщения, неумение работать с документацией и т.п.);
3) невозможность работать с системой в силу отсутствия технической поддержки (неполнота документации, недостаток справочной информации и т.п.).
Основными источниками внутренних отказов являются:
1) отступление (случайное или умышленное) от установленных правил эксплуатации;
2) выход системы из штатного режима эксплуатации в силу случайных или преднамеренных действий пользователей или обслуживающего персонала (превышение расчетного числа запросов, чрезмерный объем обрабатываемой информации и т.п.);
3) ошибки при (пере)конфигурировании системы;
4) отказы программного и аппаратного обеспечения;
5) разрушение данных;
6) разрушение или повреждение аппаратуры.
По отношению к поддерживающей инфраструктуре рекомендуется рассматривать следующие угрозы:
1) нарушение работы (случайное или умышленное) систем связи, электропитания, водо- и/или теплоснабжения, кондиционирования;
2) разрушение или повреждение помещений;
3) невозможность или нежелание обслуживающего персонала и/или пользователей выполнять свои обязанности (гражданские беспорядки, аварии на транспорте, террористический акт или его угроза, забастовка и т.п.).
Весьма опасны так называемые "обиженные" сотрудники — нынешние и бывшие. Как правило, они стремятся нанести вред организации - "обидчику", например:
1) испортить оборудование;
2) встроить логическую бомбу, которая со временем разрушит программы и/или данные;
3) удалить данные.
Обиженные сотрудники, даже бывшие, знакомы с порядками в организации и способны нанести немалый ущерб. Необходимо следить за тем, чтобы при увольнении сотрудника его права доступа (логического и физического) к информационным ресурсам аннулировались.
Опасны, разумеется, стихийные бедствия и события, воспринимаемые как стихийные бедствия,— пожары, наводнения, землетрясения, ураганы. По статистике, на долю огня, воды и тому подобных "злоумышленников" (среди которых самый опасный — перебой электропитания) приходится 13% потерь, нанесенных информационным системам.