
- •Информационное обеспечение систем управления
- •1. Информационные системы и базы данных (лекция 1)
- •1.1. Понятие информационной системы, информационное обеспечение
- •1.2. Понятие базы данных
- •1.3. Понятие системы управления базами данных
- •1.3.1. Обобщенная архитектура субд
- •Предметная область
- •1.3.2. Достоинства и недостатки субд
- •1.4. Категории пользователей базой данных
- •1.4.1. Общая классификация пользователей бд
- •1.4.2. Администратор базы данных
- •1.4.3. Разделение функций администрирования
- •2. Проектирование баз данных (лекция 2)
- •2.1. Жизненный цикл информационной системы
- •2.2. Подходы и этапы проектирования баз данных
- •2.2.1. Цели и подходы к проектированию баз данных
- •«Описание предметной области» ↔ «схема внутренней модели базы данных».
- •2.2.2. Этапы проектирования баз данных
- •3. Архитектуры субд (лекции 3-4)
- •3.1. Телеобработка
- •3.2. Файловый сервер
- •3.3. Технология «клиент/сервер»
- •3.4. Понятие независимости данных
- •4. Инфологическое проектирование базы данных (лекции 5-6)
- •4.1. Модель «сущность-связь»
- •4.2. Классификация сущностей, расширение er-модели
- •4.3. Проблемы er-моделирования
- •5. Выбор субд (лекция 7)
- •5.1. Метод ранжировки
- •5.2. Метод непосредственных оценок
- •5.3. Метод последовательных предпочтений
- •5.4. Оценка результатов экспертного анализа
- •6. Даталогические модели данных (лекции 8-9)
- •6.1. Иерархическая модель
- •6.2. Сетевая модель
- •6.3. Реляционная модель
- •6.4. Достоинства и недостатки даталогических моделей
- •7. Физическая организация данных в субд (лекции 10-11)
- •7.1. Списковые структуры
- •7.1.1. Последовательное распределение памяти
- •7.1.2. Связанное распределение памяти
- •7.2. Модель внешней памяти
- •7.3. Методы поиска и индексирования данных
- •7.3.1. Последовательный поиск
- •7.3.2. Бинарный поиск
- •7.3.3. Индекс - «бинарное дерево»
- •7.3.4. Неплотный индекс
- •7.3.5. Плотный индекс
- •3.3.6. Инвертированный файл
- •8. Внутренний язык субд (лекции 12-13)
- •8.1. Теоретические языки запросов
- •8.1.1. Реляционная алгебра
- •8.1.2. Реляционное исчисление кортежей
- •8.1.3. Реляционное исчисление доменов
- •8.1.4. Сравнение теоретических языков
- •8.2. Определение реляционной полноты
- •8.3. Введение в язык sql
- •8.3.1. Краткая история языка sql
- •8.3.2. Структура языка sql
- •8.3.3. Типы данных sql
- •9. Распределенные базы данных и субд (лекция 14)
- •9.1. Основные определения, классификация распределенных систем
- •9.2. Преимущества и недостатки распределенных субд
- •9.3. Функции распределенных субд
- •9.4. Архитектура распределенных субд
- •9.5. Разработка распределенных реляционных баз данных
- •9.5.1. Распределение данных
- •9.5.2. Фрагментация
- •9.5.3. Репликация
- •9.5.3.1. Виды репликации
- •9.5.3.2. Функции службы репликации
- •9.5.3.3. Схемы владения данными
- •9.5.3.4. Сохранение целостности транзакций
- •9.5.3.5. Моментальные снимки таблиц
- •9.5.3.6. Триггеры базы данных
- •9.5.3.7. Выявление и разрешение конфликтов
- •9.6. Обеспечение прозрачности
- •9.6.1. Прозрачность распределенности
- •9.6.2. Прозрачность транзакций
- •9.6.3. Прозрачность выполнения
- •9.6.4. Прозрачность использования
- •10. Защита и секретность данных. (лекции 15-16)
- •10.1. Понятие информационной безопасности. Основные составляющие
- •10.1.1. Понятие информационной безопасности
- •10.1.2. Основные составляющие информационной безопасности
- •10.2. Распространение объектно-ориентированного подхода на информационную безопасность
- •10.2.1. Основные понятия объектно-ориентированного подхода
- •10.2.2. Применение объектно-ориентированного подхода к рассмотрению защищаемых систем
- •10.3. Наиболее распространенные угрозы
- •10.3.1. Основные определения и критерии классификации угроз
- •10.3.2. Наиболее распространенные угрозы доступности
- •10.3.3. Некоторые примеры угроз доступности
- •10.3.4. Основные угрозы целостности
- •10.3.5. Основные угрозы конфиденциальности
- •10.4. Административный уровень информационной безопасности
- •10.4.1. Основные понятия
- •10.4.2. Политика безопасности
- •10.4.3. Программа безопасности
- •10.5. Управление рисками
- •10.5.1. Основные понятия
- •10.5.2. Подготовительные этапы управления рисками
- •10.5.3. Основные этапы управления рисками
- •10.6. Процедурный уровень информационной безопасности
- •10.6.1.Основные классы мер процедурного уровня
- •10.6.2. Управление персоналом
- •10.6.3. Физическая защита
- •10.6.4. Поддержание работоспособности
- •10.6.5. Реагирование на нарушения режима безопасности
- •10.6.6. Планирование восстановительных работ
- •10.7. Основные программно-технические меры
- •10.7.1. Основные понятия программно-технического уровня информационной безопасности
- •10.7.2. Особенности современных информационных систем, существенные с точки зрения безопасности
- •10.7.3. Архитектурная безопасность
9.5.3.7. Выявление и разрешение конфликтов
Когда несколько сайтов могут независимо вносить изменения в реплицируемые данные, необходимо использовать некоторый механизм, позволяющий выявлять конфликтующие обновления данных и восстанавливать согласованность информации в базе. Простейший механизм обнаружения конфликтов в отдельной таблице состоит в рассылке исходным сайтом как новых, так и исходных значений измененных данных для каждой строки, которая была обновлена с момента последней синхронизации копий. На целевом сайте сервер репликации должен сравнить с полученными значениями каждую строку в целевой базе данных, которая была локально изменена за данный период. Однако этот метод требует установки дополнительных соглашений для обнаружения других типов конфликтов, например нарушения ссылочной целостности между двумя таблицами.
Было предложено несколько различных механизмов разрешения конфликтов, однако чаще всего применяются следующие [7].
Самая ранняя или самая поздняя временная отметка. Изменяются соответственно данные с самой ранней или самой поздней временной отметкой.
Приоритеты сайтов. Применяется обновление, поступившее с сайта с наибольшим приоритетом.
Дополняющие и усредненные обновления. Введенные изменения обобщаются. Этот вариант разрешения конфликтов может использоваться в тех случаях, когда обновление атрибута выполняется операциями, записанными в форме отклонений.
Минимальное или максимальное значение. Применяются обновления, соответствующие столбцу с минимальным или максимальным значением.
По решению пользователя. АБД создает собственную процедуру разрешения конфликта. Для устранения различных типов конфликтов могут быть подготовлены различные процедуры.
Сохранение информации для принятия решения вручную. Сведения о конфликте записываются в журнал ошибок для последующего анализа и устранения администратором базы данных вручную.
9.6. Обеспечение прозрачности
В определении РСУБД, приведенном в разд.5.1, утверждается, что система должна обеспечить прозрачность распределенного хранения данных для конечного пользователя. Под прозрачностью понимается сокрытие от пользователей деталей реализации системы. Например, в централизованной СУБД обеспечение независимости программ от данных также можно рассматривать как одну из форм прозрачности – в данном случае от пользователя скрываются изменения, происходящие в определении и организации хранения данных.
Распределенные СУБД могут обеспечивать различные уровни прозрачности. Однако в любом случае преследуется одна и та же цель: сделать работу с распределенной базой данных совершенно аналогичной работе с обычной централизованной СУБД. Выделяют четыре основных типа прозрачности, которые могут иметь место в системе с распределенной базой данных [7].
Прозрачность распределейности.
Прозрачность транзакций.
Прозрачность выполнения.
Прозрачность использования.
Следует отметить, что полная прозрачность не всегда принимается как одна из целевых установок. В [7] указывается, что приложения, написанные с учетом полной прозрачности доступа в географически распределенной базе данных, обычно характеризуются недостаточными управляемостью, модульностью и производительностью обработки сообщений.