
- •Информационное обеспечение систем управления
- •1. Информационные системы и базы данных (лекция 1)
- •1.1. Понятие информационной системы, информационное обеспечение
- •1.2. Понятие базы данных
- •1.3. Понятие системы управления базами данных
- •1.3.1. Обобщенная архитектура субд
- •Предметная область
- •1.3.2. Достоинства и недостатки субд
- •1.4. Категории пользователей базой данных
- •1.4.1. Общая классификация пользователей бд
- •1.4.2. Администратор базы данных
- •1.4.3. Разделение функций администрирования
- •2. Проектирование баз данных (лекция 2)
- •2.1. Жизненный цикл информационной системы
- •2.2. Подходы и этапы проектирования баз данных
- •2.2.1. Цели и подходы к проектированию баз данных
- •«Описание предметной области» ↔ «схема внутренней модели базы данных».
- •2.2.2. Этапы проектирования баз данных
- •3. Архитектуры субд (лекции 3-4)
- •3.1. Телеобработка
- •3.2. Файловый сервер
- •3.3. Технология «клиент/сервер»
- •3.4. Понятие независимости данных
- •4. Инфологическое проектирование базы данных (лекции 5-6)
- •4.1. Модель «сущность-связь»
- •4.2. Классификация сущностей, расширение er-модели
- •4.3. Проблемы er-моделирования
- •5. Выбор субд (лекция 7)
- •5.1. Метод ранжировки
- •5.2. Метод непосредственных оценок
- •5.3. Метод последовательных предпочтений
- •5.4. Оценка результатов экспертного анализа
- •6. Даталогические модели данных (лекции 8-9)
- •6.1. Иерархическая модель
- •6.2. Сетевая модель
- •6.3. Реляционная модель
- •6.4. Достоинства и недостатки даталогических моделей
- •7. Физическая организация данных в субд (лекции 10-11)
- •7.1. Списковые структуры
- •7.1.1. Последовательное распределение памяти
- •7.1.2. Связанное распределение памяти
- •7.2. Модель внешней памяти
- •7.3. Методы поиска и индексирования данных
- •7.3.1. Последовательный поиск
- •7.3.2. Бинарный поиск
- •7.3.3. Индекс - «бинарное дерево»
- •7.3.4. Неплотный индекс
- •7.3.5. Плотный индекс
- •3.3.6. Инвертированный файл
- •8. Внутренний язык субд (лекции 12-13)
- •8.1. Теоретические языки запросов
- •8.1.1. Реляционная алгебра
- •8.1.2. Реляционное исчисление кортежей
- •8.1.3. Реляционное исчисление доменов
- •8.1.4. Сравнение теоретических языков
- •8.2. Определение реляционной полноты
- •8.3. Введение в язык sql
- •8.3.1. Краткая история языка sql
- •8.3.2. Структура языка sql
- •8.3.3. Типы данных sql
- •9. Распределенные базы данных и субд (лекция 14)
- •9.1. Основные определения, классификация распределенных систем
- •9.2. Преимущества и недостатки распределенных субд
- •9.3. Функции распределенных субд
- •9.4. Архитектура распределенных субд
- •9.5. Разработка распределенных реляционных баз данных
- •9.5.1. Распределение данных
- •9.5.2. Фрагментация
- •9.5.3. Репликация
- •9.5.3.1. Виды репликации
- •9.5.3.2. Функции службы репликации
- •9.5.3.3. Схемы владения данными
- •9.5.3.4. Сохранение целостности транзакций
- •9.5.3.5. Моментальные снимки таблиц
- •9.5.3.6. Триггеры базы данных
- •9.5.3.7. Выявление и разрешение конфликтов
- •9.6. Обеспечение прозрачности
- •9.6.1. Прозрачность распределенности
- •9.6.2. Прозрачность транзакций
- •9.6.3. Прозрачность выполнения
- •9.6.4. Прозрачность использования
- •10. Защита и секретность данных. (лекции 15-16)
- •10.1. Понятие информационной безопасности. Основные составляющие
- •10.1.1. Понятие информационной безопасности
- •10.1.2. Основные составляющие информационной безопасности
- •10.2. Распространение объектно-ориентированного подхода на информационную безопасность
- •10.2.1. Основные понятия объектно-ориентированного подхода
- •10.2.2. Применение объектно-ориентированного подхода к рассмотрению защищаемых систем
- •10.3. Наиболее распространенные угрозы
- •10.3.1. Основные определения и критерии классификации угроз
- •10.3.2. Наиболее распространенные угрозы доступности
- •10.3.3. Некоторые примеры угроз доступности
- •10.3.4. Основные угрозы целостности
- •10.3.5. Основные угрозы конфиденциальности
- •10.4. Административный уровень информационной безопасности
- •10.4.1. Основные понятия
- •10.4.2. Политика безопасности
- •10.4.3. Программа безопасности
- •10.5. Управление рисками
- •10.5.1. Основные понятия
- •10.5.2. Подготовительные этапы управления рисками
- •10.5.3. Основные этапы управления рисками
- •10.6. Процедурный уровень информационной безопасности
- •10.6.1.Основные классы мер процедурного уровня
- •10.6.2. Управление персоналом
- •10.6.3. Физическая защита
- •10.6.4. Поддержание работоспособности
- •10.6.5. Реагирование на нарушения режима безопасности
- •10.6.6. Планирование восстановительных работ
- •10.7. Основные программно-технические меры
- •10.7.1. Основные понятия программно-технического уровня информационной безопасности
- •10.7.2. Особенности современных информационных систем, существенные с точки зрения безопасности
- •10.7.3. Архитектурная безопасность
9.5.3.4. Сохранение целостности транзакций
Первые попытки реализации механизма репликации по самой своей сути не предусматривали сохранения целостности транзакций [7]. Данные копировались без сохранения свойства атомарности транзакций, что потенциально могло привести к утрате целостности распределенных данных. Этот подход проиллюстрирован на рис. 5.8, а.
В данном случае транзакция, состоящая на исходном сайте из нескольких операций обновления данных в различных таблицах, в процессе репликации преобразовывалась в серию отдельных транзакций, каждая из которых обновляла данные в одной из таблиц. Если часть этих транзакций на целевом сайте завершалась успешно, а остальная часть – нет, то согласованность информации между двумя базами данных утрачивалась.
Рис. 5.8. Репликация транзакций:
а) без соблюдения свойства атомарности; б) с соблюдением атомарности транзакций
В противоположность этому, на рис. 5.8, б показан пример репликации с сохранением структуры транзакции в исходной базе данных.
9.5.3.5. Моментальные снимки таблиц
Метод моментальных снимков таблиц позволяет асинхронно распространять результаты изменений, выполненных в отдельных таблицах, группах таблиц, представлениях или фрагментах таблиц в соответствии с заранее установленным графиком [7].
Общий подход к созданию моментальных снимков состоит в использовании файла журнала восстановления базы данных, который позволяет минимизировать уровень дополнительной нагрузки на систему. Основная идея состоит в том, что файл журнала является лучшим источником для получения сведений об изменениях в исходных данных. Достаточно иметь механизм, который будет обращаться к файлу журнала для выявления изменений в исходных данных, после чего распространять обнаруженные изменения на целевые базы данных, не оказывая никакого влияния на нормальное функционирование исходной системы. Различные СУБД реализуют подобный механизм по-разному: в некоторых случаях данный процесс является частью самого сервера СУБД, тогда как в других случаях он реализуется как независимый внешний сервер.
Для отправки сведений об изменениях на другие сайты целесообразно применять метод организации очередей. Если произойдет отказ сетевого соединения или целевого сайта, сведения об изменениях могут сохраняться в очередях до тех пор, пока соединение не будет восстановлено. Для гарантии сохранения согласованности данных порядок доставки сведений на целевые сайты должен сохранять исходную очередность внесения изменений.
9.5.3.6. Триггеры базы данных
Альтернативный подход заключается в предоставлении пользователям возможности создавать собственные приложения, выполняющие репликацию данных с использованием механизма триггеров базы данных.
В этом случае на пользователей возлагается ответственность за написание тех триггерных процедур, которые будут вызываться при возникновении соответствующих событий, например при создании новых записей или обновлении уже существующих. Хотя подобный подход предоставляет большую гибкость, чем механизм создания моментального снимка, ему также присущи определенные недостатки.
Отслеживание запуска и выполнение триггерных процедур создает дополнительную нагрузку на систему.
Триггеры выполняются при каждом изменении строки в ведущей таблице. Если ведущая таблица подвержена частым обновлениям, вызов триггерных процедур может создать существенную дополнительную нагрузку на приложения и сетевые соединения. В противоположность этому, при использовании моментальных снимков все выполненные изменения пересылаются за одну операцию.
Триггеры не могут выполняться в соответствии с некоторым графиком. Они выполняются в тот момент, когда происходит обновление данных в ведущей таблице. Моментальные снимки могут создаваться в соответствии с установленным графиком или даже вручную. В любом случае это позволяет исключить дополнительную нагрузку от репликации данных в периоды пиковой нагрузки на систему.
Если реплицируется несколько связанных таблиц, синхронизация их репликации может быть достигнута за счет использования механизма групповых обновлений. Решить эту задачу с помощью триггеров существенно сложнее.
Аннулирование результатов выполнения триггер-ной процедуры в случае отмены или отката транзакции – достаточно сложная задача.