Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

книги из ГПНТБ / Кравченко Р.Г. Основы кибернетики учеб. пособие

.pdf
Скачиваний:
46
Добавлен:
25.10.2023
Размер:
12.7 Mб
Скачать

ствует точка с теми же значениями координат хи х2, ..., хп. Эта точка называется изображающей точкой (она изображает дан­ ное состояние системы), а переменные х\, х^,.. .,х„ называются координатами системы.

Вреальных системах не все их координаты могут изменяться

внеограниченных пределах. Большая часть координат может принимать лишь значения, лежащие в ограниченном интервале,

т. е. удовлетворяющие условию сц ^Х г^р ,, где а* и р*— гра­ ницы интервалов возможных значений координаты Хг. Область пространства состояний, в которой может находиться изобра­

жающая

точка,

называется областью допустимых

состояний.

В дальнейшем,

говоря

о пространстве

состояний,

мы будем

иметь в

виду лишь его

д о п у с т и м у ю

о б л а с т ь . Однако

даже в пределах области допустимых состояний не всегда лю­ бая точка изображает возможное состояние системы. Таким свойством обладает лишь н е п р е р ы в н о е п р о с т р а н с т в о с о с т о я н и й , соответствующее такой системе, координаты ко­ торой могут принимать любые значения (в допустимых преде­ лах). Но существуют системы, называемые дискретными, в ко­ торых координаты могут принимать лишь конечное число фикси­ рованных значений. Пространство состояний таких систем также является дискретным. В этом случае изображающая точка мо­

жет занимать лишь конечное число S

положений: S = Si-s ...s„,

где Si — число дискретных состояний

г'-й координаты.

Если система находится в движении, то значения ее коорди­ нат изменяются во времени. При этом изображающая точка из­ меняет свое положение в пространстве состояний, описывая некоторую траекторию. Последовательность положений (состоя­ ний), принимаемых системой во времени, определяет т р а е к ­ т о р и ю и з м е н е н и й с и с т е м ы , и л и л и н и ю п о в е д е - н и я.

Движение системы (изменение ее состояния) может проис­ ходить как под влиянием внешних воздействий, так и в резуль­ тате процессов, происходящих внутри самой системы. Воздей­ ствия на систему в математическом смысле могут достигаться посредством воздействий на координаты системы, а также по­ средством изменения ее параметров.

Режимы поведения системы можно рассматривать как р а в ­ нове с ный , п е р е х о д н ы й и п е р и о д и ч е с к и й .

О равновесии в поведении системы можно утверждать в про­ стейшем случае тогда, когда состояние и преобразование свя­ заны между собой так, что преобразование не изменяет состоя­ ние системы. Алгебраически это можно записать так: Т(х)—х.

Если рассматривать равновесный режим поведения системы в целом, то тогда необходимо сделать следующее заключение. Допустим, что некоторые элементы этой системы (или части) на­ ходятся в состоянии равновесия и под влиянием подаваемых на них входов совершают преобразования, не изменяющие состоя­

50

ние системы в целом (тождественные преобразования). В свою очередь эти элементы определяют входные значения для других элементов (частей) системы, делая их состояние неизменным. Тогда вся система находится в состоянии равновесия.

Вэтом случае можно дать определение: вся система нахо­ дится в состоянии равновесия тогда, и только тогда, когда каж­ дая часть находится в состоянии равновесия в условиях, опреде­ ляемых другой частью (другими частями, другими элементами).

О переходном и периодическом режимах поведения системы существуют различные толкования, мнения. Наиболее приемле­ мыми, на наш взгляд, могут быть такие определения.

Всистеме совершаются определенные преобразования таким образом, что она постоянно находится в состоянии равновесия. На каком-то этапе внешние возмущающие воздействия смещают систему из состояния равновесия в какое-нибудь соседнее со­ стояние. Однако дальнейшие преобразования происходят таким образом, что система вновь возвращается в состояние, которое было характерно для момента, определенного как равновесное состояние. Отсюда период, в котором система находится в со­ седнем состоянии — от периода фиксированного равновесия до

периода возвращения в это состояние, может считаться п е р е ­ х о д н ым п е р и о д о м в режиме поведения системы (переход­ ный режим системы).

Так, если в системе S преобразования Т имеют вид У , | a b d е е

\ с b е е f

то в случаях состояний Ь и е система находилась в состоянии равновесия для Т.

Если Т имеет вид

гр . | a

b

d

b

\ с

Ь

с

b

то период d-vc является переходным периодом в режиме поведе­ ния системы.

В некоторых случаях переходным периодом в режиме си­ стемы считают период, предшествующий равновесному режиму поведения системы. Но с этим трудно согласиться, так как ско­ рее этот период должен был бы именоваться п р е д ш е с т в у ю ­ щим.

Наконец, если переходный период повторяется с определен­

ной регулярностью,

то

можно судить о

п е р и о д и ч е с к о м

р е ж и м е п о в е д е н и я

системы. При

этом совершенно не

обязательно, чтобы

смещение состояний

равновесия системы

в какое-либо соседнее состояние происходило под влиянием оди­ наковых внешних возмущающих воздействий, с одинаковым ха­ рактером преобразований. Важно то, что система периодически возвращается к состоянию равновесия.

3* 51

Так, если в системе S преобразования Т имеют вид

у, _ | a

b

d

b

f

b

i с

b

с

Ь

с

b

то в случаях состояния Ъ система находится в периодическом равновесном режиме поведения системы.

В качестве примера приведем динамическую систему «птице­ ферма яичного направления», ведущую производство по прин­ ципу простого воспроизводства. Все материальные, энергетиче­ ские и информационные входы такой системы (в качестве воз­ мущающих воздействий) в течение определенного периода постоянны и способствуют реализации четко определенного по­ рядка преобразований. Внутренние элементы (части) этой си­ стемы так взаимосвязаны, что каждая часть находится в со­ стоянии равновесия, определенном другими частями. Это опре­ деляет равновесный режим поведения системы в целом; объем производства яиц и мяса (выбракованные куры-несушки) в те­ чение одного периода неизменный, равномерный.

Представим, что в какой-то период из-за технических непола­ док ферма была отключена от электроэнергии, причем продол­ жительность была такова, что ход производства нарушился и ферма произвела меньше продукции. Но затем техническая не­ исправность была устранена, и производство на ферме верну­ лось к прежнему режиму. Время, в течение которого на птице­ ферме был нарушен режим, явилось переходным периодом.

Если по каким-либо причинам работа птицефермы периоди­ чески нарушается, а затем на некоторое время восстанавли­ вается равновесный режим (под этим понимается выпуск опре­ деленных объемов продукции), то это можно трактовать, как периодический режим. Заметим, что организационные и другие причины, выводящие работу фермы из равновесного режима и переводящие ее в периодический режим, должны различаться. В противном случае, если переход ее в другое, соседнее состоя­ ние возникает с определенной периодичностью в результате од­ ного и того же возмущающего воздействия, и при этом сосед­ нее состояние повторяется, то в целом такой режим поведения

системы может трактоваться как равновесный.

многих

случаях

Понятие у с т о й ч и в о с т и

с и с т е м ы во

употребляется и трактуется не

совсем ‘точно.

Будем

понимать

под устойчивостью системы сохранение ее состояния независимо от внешних возмущений.

Нельзя отождествлять понятия устойчивости и равновесия. Если состояние равновесия системы может рассматриваться как некая тождественность происходящих в ней преобразований, оп­ ределяющих одинаковое состояние системы на любом шаге ее развития, то состояние устойчивости более емкое.

Представим себе систему S, в которой характер преобразо­ ваний Т таков, что превращение каждого операнда в образ про-

52

исходит с учетам приращения или уменьшения его характери­ стики, с учетом постоянной относительно каждого операнда величины Aki; при этом каждый образ становится в последую­ щем преобразовании операндом.

Например, начав с величины k, Т породит траекторию k, ku k2, k3, h , ..., где ki—k = Ak; k2—ki = Aki\ kz—k2=Ak2 и т. д.

В качестве примера устойчивой экономической системой можно назвать предприятие, функционирование которого обеспе­ чивает ежегодно равные темпы расширенного воспроизводства.

Можно дополнить, что характеристика системы как устойчи­ вой не всегда является положительной. В некоторых случаях устойчивость можно рассматривать как нежелательную, не до­ пускающую гибкость в управлении системой (если какое-то ее состояние не является желательным).

Трактовка понятия устойчивости системы позволяет подойти к понятию и н в а р и а н т н о с т и . Инвариантность в последова­ тельности состояний систем заключается в том, что, несмотря на изменения, претерпеваемые системой в целом, некоторые ее свойства остаются неизменными. Таким образом, некоторое вы­ сказывание о системе, несмотря на беспрерывное изменение, не­ изменно будет истинным.

К понятиям устойчивости и состояния равновесия системы близко понятие ц и к л а в п р е о б р а з о в а н и и с и с т е м ы .

Циклом называется такая последовательность состояний си­ стемы, при которой повторное изменение преобразований за­ ставляет изображающую точку пробегать повторно эту после­ довательность.

Допустим, что Т имеет следующий вид:

г |/1

3 2

5

6

7

8

4\

Ц 2

4 3

4

1

2

2

8)

Если переписать это с 1, то преобразование после некоторых упрощений опишет следующую траекторию:

Т = 1, 2, 3, 4, 8, 2, 3, 4, 8, 2, 3 . . .

Представляющая точка будет повторно описывать цикл

2<---------

>3

 

f

8------------

>4

Используя комплекс идей, связанных с понятием устойчиво­ сти, равновесия в поведении системы, весьма эффективно при изучении экономических систем (больших систем большой слож­ ности) провести соответствующий анализ.

Прежде всего состояние системы изучается с позиций воз­ можного его равновесия, т. е. изменяется ли оно, будучи

5 3

подвергнутым каким-либо преобразованиям. Рассматривается, является ли это равновесие достаточно устойчивым, и если да, то каков режим поведения изучаемой системы.

Если дано такое состояние (или множество таких состояний) и конкретные возмущения, то анализируется, вернется ли си­ стема после смещения в свою исходную область. И если си­ стема непрерывна, то рассматривается, является ли она устой­ чивой против всех возмущений внутри определенной области значений.

Применение метода рассмотрения систем очень конструк­ тивно при описании больших систем. В ряде случаев полное опи­ сание систем, каждой детали ее поведения в будущем можно заменить более простым рассмотрением. Возможно, что система вернется в свое обычное состояние или же еще больше будет отклоняться от намеченной траектории. В тех случаях, когда при управлении целесообразно следить за развитием системы по намеченной траектории и удерживать ее на ней (даже с затра­ тами дополнительных материальных и энергетических ресурсов), предварительное рассмотрение режимов поведения системы по­ зволит ответить на вопросы: «нарушат ли данные возмущения равновесный режим системы или создадут только периодиче­ ский режим?»; «если система достаточно устойчива и будет воз­ вращаться в свою исходную область, имеют ли смысл затраты по устранению либо возмущений, либо их результата?»; нако­ нец, «какие возмущения должны быть обязательно устранены?» и, наоборот, в случаях нежелательной устойчивости «какие внешние возмущения могут вывести систему из равновесия?».

Перечислены не все возможные'пути анализа состояний уп­ равляемой системы с позиций идей, изложенных в главе. Освое­ ние этого метода рассмотрения состояния и поведения системы дает возможность в производственных условиях создать необхо­ димые предпосылки для эффективного управления производст­ венными системами, обеспечить их функционирование в опти­ мальном с позиций поставленных требований режиме.

Г л а в а 3

ПРОИЗВОДСТВО КАК СИСТЕМА

Понятие «производство как система» может рассматриваться

вфизическом, экономическом и кибернетическом аспектах.

Вфизическом аспекте производство понимают как матери­ ально-техническую систему, состоящую из определенных мате­ риальных элементов, взаимодействующих в процессе производ­ ства либо взаимосвязанных материальными потоками. В эконо­ мическом аспекте производство можно понимать как систему разделения труда между людьми, их группировку в производ­ стве, обусловленную материально-технической системой и опре­ деляющую последовательность выполнения работ во времени и

впространстве.

Кибернетическое представление производства связано с тем, что процесс управления всегда представляет собой информа­ ционный процесс, поэтому при кибернетическом подходе произ­ водство необходимо рассматривать как систему, связанную ин­ формационной сетью, реализующую множество функций выбора. Но при этом понятие материального производства не должно от­ брасываться. При реализации кибернетической модели осущест­ вляется переход от ее информационного отображения к вещест­ венной и экономической системам производства и их закономер­ ностям. Этот переход от информационной к реальной системе осуществляется через определенный исполнительный орган, вхо­ дящий в систему управления. Последний с помощью веществен­ но-материальных либо энергетических воздействий на управляе­ мую систему должен реализовать информационные команды. Та­ ким образом управляемая физическая система — производство как элемент системы управления переводится в заданное со­

стояние.

Особенности производственной системы. Производству как системе присущи все особенности, свойственные большим ве­ роятностным системам. Вместе с тем ему присущи определен­ ные особенности, отличающие его от технических и биологиче­ ских систем.

Одна из особенностей этой системы состоит в ее определен­ ной целостности, выражающейся в том, что все ее части (под­ системы) служат одной общей цели, стоящей перед всей си­ стемой. Это достигается тем, что целям, стоящим перед всей системой, подчиняются цели функционирования ее подсистем.

55

Таким образом, в такой сложной системе выделяются общие (глобальные) цели, достижению которых подчиняется функцио­ нирование системы, и локальные цели, используемые в функцио­ нировании отдельных подсистем, выделяемых в системе произ­ водства. При этом критерии функционирования и развития под­ систем должны наилучшим образом способствовать достижению общего критерия функционирования и развития всей системы.

Следующая особенность — большая сложность этой системы. Она выражается в том, что изменения, возникающие в какойлибо ее части, вызывают изменения в других ее подсистемах. Так, например, развитие химической промышленности приводит не только к изменениям в этой отрасли, но оказывает преобра­ зующее воздействие, в частности, на сельскохозяйственное про­ изводство, а также на структуру спроса и потребления. Раз­ витие подсистемы «зерновое хозяйство» является ключевым моментом в развитии всей системы сельскохозяйственного про­ изводства. Все это связано с наличием в производственных си­ стемах множества прямых и обратных связей между подсисте­ мами и внутри них.

Особенностью производственной системы является также на­ личие в ней материально-вещественных, энергетических и инфор­ мационных связей. Современной производственной системе ха­ рактерен также процесс механизации и автоматизации реали­ зуемых в ней процессов, а также то, что доминирующая роль в этой системе принадлежит человеку.

Производственной системе свойственно непрерывное разви­ тие, что обусловливает изменение характера взаимодействия между ее элементами и подсистемами, а также всеобщая взаи­ мозаменяемость ее компонентов. Так, в широких пределах взаи­ мозаменяемы живой и овеществленный труд, в определенных пределах взаимозаменяемы материальные факторы производ­ ства. Взаимозаменяемы также продукты производства: пред­ меты потребления для удовлетворения материальных потреб­ ностей людей, предметы и средства труда для обеспечения производственного потребления. Все это создает большую аль­ тернативность в функционировании и развитии производствен­ ных систем.

Характерной особенностью производственной системы яв­ ляется широкое развитие обменных операций, которые в усло­ виях товарного производства порождают органическое соче­ тание натуральных и стоимостных потоков, отличающих эти системы от всех других систем материального мира. Производст­ венным системам свойственно соизмерение не только продуктов производства, составляющих выход этих систем, но и затрат на их производство, составляющих их вход. Без объективного и действенного механизма измерения затрат и выпуска исчезает экономическая сущность производства, остается лишь его тех­ ника и технология.

56

Производственная система, особенно такая, как сельское хо­ зяйство, всегда находится под постоянным воздействием со сто­ роны природных факторов, а также со стороны общества. Эти внешние воздействия носят в основном не детерминированный, а случайный (стохастический) характер. Они могут прогнозиро­ ваться лишь с определенной степенью достоверности. Это от­ носится как к оценке природных ресурсов и погодно-клима­ тических условий, так и к оценке потребности в материальных благах, роста населения, эффективности новой техники и т. п.

Таким образом, производственным системам свойствен ве­ роятностный характер, и присущие им закономерности не могут быть определены абсолютно достоверно, а следовательно, пове­ дение этих систем является в той или иной степени неопреде-

РИС. 14.

Экономическая система

ленным. Наряду с этим производственным системам свойст­ венна также определенная инерционность, что создает доста­ точно высокую степень обусловленности будущего поведения системы.

Производство как основная экономическая система. Марк­ систская политическая экономия рассматривает воспроизвод­ ство как сложный процесс, состоящий из создания, распределе­ ния, обращения и потребления материальных благ. Исходя из этого, экономическую систему можно рассматривать как си­ стему, в состав которой входят системы производства, распре­ деления, обращения и потребления. В этой сложной взаимосвя­ занной системе определяющей является система производства материальных благ (рис. 14).

Материальное производство есть деятельность людей, осу­ ществляемая в целях удовлетворения материальных потребно­ стей посредством воздействия на силы и вещество природы, пре­ образования и присвоения последнего в условиях определенных производственных отношений. В непроизводственной сфере дея­ тельность людей выполняет совершенно другие задачи: она направлена на сохранение здоровья человека, на получение образования и развитие духовного мира, развитие науки, на обеспечение обороны и другие сферы человеческой деятельности. Непроизводственная сфера абсолютно необходима обществу, она существует и развивается на основе развития материаль­ ного производства.

57

При построении модели материального производства ус­ ловно выделим из окружающего нас мира совокупность людей, ради удовлетворения потребностей которых и функционирует рассматриваемая система производства, а также природу и ее силы.

Вещество природы, подвергающееся дальнейшему преобра­ зованию, назовем сырьем (Р0). Для получения сырья у природы надо взять ее вещество. Для этого создана добывающая про­ мышленность, обозначим ее По. Сырье может использоваться как для производства средств производства, так и для произ­ водства предметов потребления. Систему, производящую сред­ ства производства, обозначим Пь предметы потребления — П2.

Свойства рассмотренных систем в определенной мере соче­ тает в себе сельскохозяйственное производство. Сельскохозяй­ ственному производству присуща непосредственная связь с та­ ким веществом природы, как почва, которая является и объек­ том, и средством труда. В этой отрасли получают значительную часть средств производства (семена, корма, скот и т. п.), в ней также создается значительная часть предметов потребления. Это обусловливает особую структуру и место этой системы в сфере производства, обозначим ее П3.

Для процесса производства необходимы средства производ­ ства и рабочая сила (Л). Рабочая сила есть способность че­ ловека к труду, совокупность физических и духовных сил чело­ века, благодаря которым он в состоянии производить материаль­ ные блага.

Таким образом, элементами производства как системы яв­ ляются материальные факторы, а также совокупность людей, участвующих в процессе производства и составляющих рабо­ чую силу.

Очень важная особенность рабочей силы как элемента про­ изводства состоит в том, что она создает и приводит в движе­ ние средства производства. Исходя из этого, видна особая роль рабочей силы в процессе производства, которая объединяет в единый процесс вещество природы, ее силы и средства, с по­ мощью которых вещество природы преобразовывается в нужном для человека направлении.

Отметим еще один важный момент для построения модели. Для осуществления процесса создания материальных благ рабо­ чая сила должна реализовать свою способность к труду, т. е. она должна быть использована, потреблена в процессе производ­ ства. А потребление труда есть сам труд, под которым пони­ мается целесообразная деятельность человека, в процессе кото­ рой он приспосабливает и видоизменяет предметы природы для удовлетворения своих потребностей. При рассмотрении произ­ водства как системы будем различать такие элементы, как рабо­ чая сила (Л) и величина действительно потребленного в про­ цессе производства труда (L).

58

РИС. 15.
Система создания материальных благ

Результатом процесса производства является целенаправ­ ленно преобразованное вещество природы — материальное благо, которое можно рассматривать как результат соединения труда, средств производства и предметов труда.

Живой труд превращает средства производства из возмож­ ных в действующие потребительские стоимости. Этот процесс введем как элемент в модель производства и обозначим его через Я. Элемент Я будет отражать процесс преобразования средств производства и труда (вход этого эле­ мента) в продукт тру­ да (выход этого эле­ мента), не раскрывая, каким образом этот процесс осуществляет­ ся. Процесс создания материальных благ можно отразить систе­ мой, изображенной на рис. 15, где А — сред­ ства труда; С — пред­

меты труда; L — рабо­

чая сила; П — процесс производства; Р — продукт труда; В — предметы потребления; Ан— полученные средства производства.

Чтобы построить более детализированную систему процесса общественного производства, которая бы позволила отразить основные взаимосвязи между его элементами, введем непроиз­ водственную сферу — сферу услуг (Пу).

Исходя из рассмотренного, построим систему общественного производства, в качестве элементов которой будут выступать введенные сферы деятельности, взаимосвязанные в единую си­ стему существующими между ними материальными связями. Для рассмотрения производства как замкнутой системы, т. е. как системы, элементы которой не имели бы связей с такими элементами, которые находились бы за контуром (пределами) рассматриваемой системы, необходимо в исследуемую систему включить все элементы, с которыми связан процесс производ­ ства и из которых он черпает сырьевые и энергетические ре­ сурсы, а также рабочую силу. В замкнутую систему должны входить также те элементы, в которых происходит завершение процесса производства путем потребления созданных материаль­ ных благ. Тогда система общественного производства будет изо­ бражаться, как указано на рис. 16.

На каждого человека, а следовательно, и на все множество людей действуют внешние возмущения (М), вызывающие их ма­ териальные потребности. Эти потребности удовлетворяются по­ средством производства предметов потребления Р2, которые являются выходом сферы П2, предметов потребления, составляю­

59

Соседние файлы в папке книги из ГПНТБ