Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
28
Добавлен:
03.03.2015
Размер:
973.82 Кб
Скачать

73

Волновая оптика

Лабораторная работа № 6-ВО

ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ

Цель работы: изучение явления дифракции света на примере дифракции Фраунгофера на дифракционной решетке; определение длины волны красной и фиолетовой линий спектра.

Приборы: проекционный фонарь белого цвета, дифракционная решетка, непрозрачный экран, два подвижных модуля, линейка, оптическая скамья, на которой монтируется оборудование.

Методические указания по организации самостоятельной работы

  1. Изучить теоретический материал по конспекту лекций и учебнику [4: §176, 177, 180, 1, 3].

  2. Изучить содержание работы.

  3. Подготовить конспект и бланк отчёта по работе [2].

  4. Подготовить ответы на вопросы к допуску и защите лабораторной работы:

  1. Электромагнитная теория света. Свойства световых волн. Уравнение и графическое изображение световой волны. Световой вектор.

  2. Энергия, переносимая световой волной. Вектор Пойнтинга. Интенсивность света.

  3. В чем заключается явление дифракции света, когда оно наблюдается, виды дифракции света.

  4. Принцип Гюйгенса-Френеля и объяснение на его основе явления дифракции.

  5. Метод зон Френеля, его применение.

  6. Вывести формулу дифракционной решетки.

  7. Вывести расчетную формулу (6.1) для определения длины световой волны.

  8. Нарисовать оптическую схему дифракции Фраунгофера на дифракционной решетке.

  9. Почему дифракционная решетка разлагает белый свет в спектр? Применение дифракционных решеток.

Теория метода и описание установки

Теория метода дана в лабораторной работе №5-ВО. Положение главных максимумов дифракционной картины зависит от длины волны . Поэтому, если источник света немонохроматический, то на экране возникает совокупность дифракционных картин, образованных монохроматическими волнами, входящими в состав излучения источника. Из формулы (5.2) следует, что каждой длине волны соответствует свое расположение максимумов, так что дифракционная картина будет представлять собой спектральное разложение света, излучаемого источником. При пропускании через решетку белого света все максимумы, кроме центрального, разложатся в спектр, фиолетовый конец которого обращен к центру дифракционной картины, красный – наружу. В центре экрана ( = 0) выполняется условие максимума для всех длин волн (m = 0), поэтому центральный максимум не разлагается. Таким образом, дифракционная решетка может быть использована как спектральный прибор.

О

Э

пределение длины волны производится на установке, оптическая схема которой показана на рис. 6.1. На дифракционную решетку из проекционного фонаря падает параллельный пучок лучей перпендикулярно плоскости решетки, l – расстояние от дифракционной решетки R до экрана Э, х – расстояние между серединами m-х максимумов, симметричных относительно центрального максимума, одного и того же цвета. Дифракционная картина наблюдается на экране без линзы.

Э

Рис.6.1.

Для определения длины волны воспользуемся формулой дифракционной решетки

(m = 0, 1, 2, …).

Так как l >> xm max, то углы дифракции малы. Тогда можно положить

Подставляя значение sin в формулу дифракционной решетки, получим формулу для определения длины световой волны:

(6.1)

где m – порядок главного дифракционного максимума; d период дифракционной решетки (d=0,3 мм для объекта 31 или d=0,6 мм для объекта 32).

Измерения и обработка результатов измерений

  1. Настройка (юстировка) установки.

    1. Включите выносной блок питания в сетевую розетку и отрегулируйте интенсивность излучения лазера регулятором блока питания 8 (рис. 1.4).

    2. Установите модуль 02 с объектом 47 (матовое стекло) в непосредственной близости от правой боковины установки и совместите луч лазера с центром объекта 47 при помощи винтов 9 лазера.

    3. Переместите модуль 02 на отметку 10 см оптической скамьи и винтами 10 совместите луч лазера с центром объекта 47.

    4. Повторите пп.1.2-1.3 два-три раза (пока смещение светового пятна лазера с центром матового стекла не окажется меньше радиуса этого светового пятна в обоих положениях модуля 02).

    5. Внимание: положение винтов 9 и 10 лазера не изменять до конца эксперимента.

    6. Установите модуль 02 на отметку 65 см, а модуль 05 на отметку 10 см оптической скамьи и, в случае необходимости, винтами модуля 05 совместите луч лазера с центром объекта 47, после чего закрепите эти модули.

    7. Установите на отметку 25 см оптической скамьи модуль 06, на отметку 40 см - модуль 08 и, в случае необходимости, винтами модуля 06 совместите луч лазера с центром объекта 47, после чего закрепите эти модули.

  1. Проведение измерений.

    1. Соберите установку по схеме рис.6.2. Дифракционную решетку (объект 31) закрепите в держателе (модуль 08). Плоскость решетки должна быть перпендикулярна оптической оси установки.

    1. Установите на оптическую скамью (см. рис. 6.2) модуль 13 с белым фонарем БФ.

    2. Соедините синий провод фонаря БФ с гнездом «-» блока питания, а красный - с гнездом «+».

    3. Включите выносной блок питания установки в сетевую розетку и регулятором блока питания отрегулируйте интенсивность света БФ.

    4. Получите на экране (модуль 05 - конденсор) четкую дифракционную картину.

    5. Измерьте расстояние l между решеткой и экраном.

    6. Измерьте расстояние хm между серединами симметричных относительно центрального максимума фиолетовых полос m-го порядка; расстояние хm между серединами симметричных относительно центрального максимума красных полос m-го порядка. Рекомендуемые значения m = 1, 2, 3. Данные занесите в таблицы, составленные по форме 6.1.

    7. Рассчитайте по формуле (6.1) длины волн красной и фиолетовой линий спектра, среднее значение длин волн <> и погрешность измерений <>. Данные занесите в таблицы, составленные по форме 6.1.

Рис. 6.2. Оптическая схема установки для наблюдения дифракции Фраунгофера на дифракционной решетке.

Форма 6.1

l

m

xm, ф

ф

ф

ф,i

ф

ф = ф  ф

Таблица для определения длины волны красной линии спектра заполняется аналогично.

Форма 6.1

l

m

xm, к

к

к

к,i

к

к = к  к

К началу

На следующую страницу

К оглавлению

К титулу

3

6

1.4

02

08

06

05

4