
- •Механика
- •2.5 Работа магнитного поля при движении проводника с током.
- •2.8 Основные положения теории электромагнитного поля Максвелла:
- •Связь ускорения со смещением
- •3.3 Квазиупругая сила. Математический и физический маятники. Циклическая частота гармонического осциллятора. Энергия колебаний.
- •3.7 Интерференция когерентных волн. Амплитуда результирующего колебания при интерференции 2х волн, условия максимумов и минимумов амплитуды. Интерференционный спектр.
- •4.2 Фотоэлектрический эффект. Вольт-амперная характеристика фототока. Опытные закономерности фотоэффекта. Уравнение Эйнштейна для фотоэффекта.
- •4.4 Ядерная модель атома.
- •4.5 Состав ядер атомов. Радиоактивность ядер. Реакции деления и синтез ядер.
- •4.6 Элементарные и фундаментальные частицы. Обменный механизм взаимодействия.
3.7 Интерференция когерентных волн. Амплитуда результирующего колебания при интерференции 2х волн, условия максимумов и минимумов амплитуды. Интерференционный спектр.
Интерференция- такое положение когерентных волн, при которой имеет место перераспределение энергии волн в пространстве и устойчивое во времени и пространстве усиление колебаний в одних местах и ослабление в других.
Когерентные волны- волны одинаковой частоты, разность фаз которых не зависит от времени.
Если источник света монохромотичный (одного цвета)-то на интерференционной картине полосы черные и цвета соответствуют источнику. Если источник излучает белый (сложный) свет, то интерференционная картина представляет собой чередующиеся спектры цветов (от фиолетового до красного)=> максимумы разлагаются в спектры.
3.8. Осуществление интерференции света с помощью тонкой пленки. Интерференционные полосы равной толщины и равного наклона.
Кольца Ньютона (пример полос равной толщины) При отражении от соприкосновения плоскопараллельной толстой стеклянной пластины и плосковыпуклой линзы с большим радиусом кривизны. Радиус темных колец в отраженном и светлых в проходящем : r=(nRh)^1/2
Где h(лямда)-длина волны,R- радиус кривизны линзы.
Радиус светлых колец в отраженном и темных в проходящем:r=((n-1/2)Rh)^1/2
3.9. Стоячая волна как частный случай интерференции. Уравнение плоской стоячей волны. Амплитуда, узлы и пучности стоячей волны. Превращения энергии в стоячей волне. Образование стоячей волны в сплошной ограниченной среде. Условия возникновения волны в стержне, в столбе воздуха, в натянутой струне. Стоячая волна в сплошной ограниченной среде как резонансное колебание.
3.10. Дифракция волн. Объяснение дифракции волн на основе принципа Гюйгенса-Френеля. Дифракция Фраунгофера на одной щели и на дифракционной решетке. Дифракционный спектр.
4.1 Тепловое Излучение, его энергетические характеристики. Закон Кирхгофа, Стефана-Больцмана, Вина. Постулат Планка.
Тепловое излучение — электромагнитное излучение, испускаемое нагретыми телами за счёт их тепловой энергии. Примером теплового излучения является свет от лампы накаливания.
Энергетические характеристики:
-
Энергетическая светимость тела. Энергетическая светимость тела- физическая величина, являющаяся функцией температуры и численно равная энергии, испускаемой телом в единицу времени с единицы площади поверхности по всем направлениям и по всему спектру частот. Или (по лекции): Это физическая величина, численно равная мощности излучения единицы поверхности нагретого тела по всему диапазону длин волн.
,
Дж/с·м²=Вт/м²
-
Спектральная плотность энергетической светимости. Спектральная плотность энергетической светимости — функция частоты и температуры характеризующая распределение энергии излучения по всему спектру частот (или длин волн). Или (по лекции): Это физическая величина, численно равная энергии, излучаемой телом с единицы поверхности в единицу времени в единичном диапазоне длин волн.
-
Поглощающая способность тела. Поглощающая способность тела - функция частоты и температуры, показывающая, какая часть энергии электромагнитного излучения, падающего на тело, поглощается телом в области частот вблизи.
То, что не было в лекции:
-
Отражающая способность тела. Отражающая способность тела - функция частоты и температуры, показывающая какая часть энергии электромагнитного излучения, падающего на тело, отражается от него в области частот вблизи.
-
Объемная плотность энергии излучения. Объемная плотность энергии излучения - функция температуры, численно равная энергии электромагнитного излучения в единицу объема по всему спектру частот
-
Спектральная плотность энергии. Спектральная плотность энергии - функция частоты и температуры, связанная с объемной плотностью излучения формулой.
Закон
излучения Кирхгофа
— физический закон, установленный
немецким физиком Кирхгофом в 1859 году.
В современной формулировке закон звучит
следующим образом:
Отношение
излучательной способности любого тела
к его поглощательной способности
одинаково для всех тел при данной
температуре для данной частоты и не
зависит от их формы и химической
природы.
Или (по лекции):
Для всех
тел, нагретых до одинаковой температуры,
отношение спектральная плотности
энергетической светимости
к Поглощающей способности тела
есть величина постоянная.
Закон
Стефана-Больцмана
— закон излучения абсолютно чёрного
тела. Определяет зависимость мощности
излучения абсолютно чёрного тела от
его температуры. Формулировка
закона:
Мощность излучения абсолютно
чёрного тела прямо пропорциональна
четвёртой степени температуры тела.
Дж·с−1·м−2
· К−4.
Закон
смещения Вина
даёт зависимость длины волны, на которой
поток излучения энергии чёрного тела
достигает своего максимума, от температуры
чёрного тела.
Или (по лекции):
обратно
пропорциональна термодинамической
температуре.
Постулат
Планка:
Тела
излучают энергию не непрерывно, а
порциями. Энергия такой порции(кванта)
равна:
h
– постоянная Планка(6.63*10-34Дж*с),
-
частота излучения