
- •В.С. Кузнецов
- •Курсовое и дипломное проектирование
- •Оглавление
- •2. Пример расчета……………………………………….
- •Нагрузки, действующие на поперечную раму
- •Нагрузка от веса покрытия и стропильной конструкции.
- •Нагрузка от веса стеновых панелей и остекления.
- •Нагрузка от веса подкрановых балок.
- •Нагрузка от веса колонн.
- •Временные нагрузки на поперечную раму опз
- •Ветровая нагрузка
- •Снеговая нагрузка
- •Крановые нагрузки
- •Статический расчет поперечной рамы
- •Составление таблицы расчетных усилий
- •Колонны опз
- •Фундаменты
- •Проектирование отдельных ступенчатых фундаментов
- •Конструктивные требования
- •Пример расчета
- •Компоновка поперечной рамы
- •Постоянные нагрузки.
- •Временные нагрузки на раму Ветровая нагрузка
- •Крановые нагрузки.
- •Статический расчет рамы
- •Порядок расчета.
- •Геометрические характеристики
- •Усилия в колоннах от крановых нагрузок.
- •Средняя колонна
- •Крайняя колонна.
- •Средняя колонна.
- •Крайняя колонна
- •Средняя колонна
- •Крайняя колонна.
- •Средняя колонна
- •Изгибающие моменты в колоннах от ветровых нагрузок.
- •Левая колонна
- •Средняя колонна
- •Расчет крайней колонн опз
- •Расчет прочности колонны в плоскости рамы
- •Определение площади арматуры
- •Определение площади арматуры
- •Определение площади арматуры
- •Конструирование крайней колонны
- •Расчет средней колонны
- •Расчет прочности колонны в плоскости рамы
- •Определение площади арматуры
- •Расчет прочности колонны в плоскости рамы
- •Определение площади арматуры в ветвях колонны
- •Расчет прочности колонны в плоскости рамы
- •Определение площади арматуры в ветвях колонны
- •2.5.1. Проектирование отдельного фундамента под среднюю колонну.
- •Расчет прочности элементов фермы. Верхний сжатый пояс
- •Расчет прочности в плоскости фермы
- •Нижний растянутой пояс
- •Проверка трещиностойкости нижнего пояса
- •Вторые потери
- •Расчет трещиностойкости пояса фермы
- •Расчет по раскрытию нормальных трещин.
- •Ширина раскрытия трещин
Нагрузка от веса подкрановых балок.
Вес подкрановых балок определяется по фактическим размерам элемента или по справочным данным. Для статических расчетов можно принять:
при шаге колонн В=6м вес железобетонной балки Gn =4,2тс,
при шаге колонн В=12м вес железобетонной балки Gn =11,5тс.
Эксцентриситет приложения продольной силы есть расстояние от оси симметрии сечения балки до физической оси сечения подкрановой части колонны, рис. 3«а». Так как расположение подкранового рельса, а следовательно и подкрановой балки зависит от унифицированных размеров кранов, то и величина эксцентриситета будет зависеть от размера λ, который при грузоподъемности кранов Q ≤ 50 тс, равен 750 мм. При нулевой привязке е0н=0,75-hн/2, при привязке 250 е0н=0,75+0,25-hн/2. N4= Gnγf γn.
Нагрузка от веса колонн.
Нагрузка от веса колонны определяется как произведение объема колонны на плотность применяемого материала. Эксцентриситет силы от веса верхней части колонны определяется приближенно, из-за невозможности реального учета эксцентриситета, вследствие больших высот надкрановых частей колонн.
Эксцентриситет усилия от веса нижней части колонны равен нулю.
Расчетные усилия от собственного веса верхней части колонны.
N4в = Gвк = hв b Hв γf γn ρ.
Расчетные усилия от собственного веса нижней части колонны.
N4н = Gнк = hн b Hн γf γ2 ρ.
Здесь ρ – средняя плотность железобетона, Для элементов из тяжелого бетона с содержанием арматуры менее 3% ρ=2500кг/м3, h, b, H – размеры расчетного участка колонны, γn – коэффициент надежности по назначению здания. γf – коэффициент надежности по нагрузке.
Временные нагрузки на поперечную раму опз
Временные нагрузки подразделяются на длительные и кратковременные.
Временными являются нагрузки от давления ветра, снеговые и крановые нагрузки. К временным длительным нагрузкам относятся 50% снеговой и 50% вертикальной крановой нагрузки для кранов режимов 4к–6к /12/.
Ветровая нагрузка
Значения коэффициента Се3 Таблица 2 | |||
В/L |
Значения се3 при | ||
h/L≤0,5 |
h/L=1 |
h/L≥2 | |
≤ 1,0 |
-0,4 |
-0,5 |
-0,6 |
≥ 2 |
-0,5 |
-0,6 |
-0,6 |

Наветренное или подветренное значения давление ветра учитываются аэродинамическим коэффициентом се. Величины аэродинамических коэффициентов «се3» для зданий с плоскими или двускатными с углом наклона до 600 покрытиями можно определить по таблице 2 или по /11/. На схеме (рис.4) и в таблице 2 приняты обозначения: h-высота здания, В-длина здания, L-ширина здания. Обычно, реальную схему давления ветра заменяют эквивалентной равномерно распределенной нагрузкой (рис.5), которая определяется из равенства момента от реального значения k и момента в заделке колонны от равномерно распределенной нагрузки, с ординатой равной kэкв .
В приведенных формулах приняты обозначения: PНо – нормативное значение давления ветра, зависящее от района и типа местности, определяется по /11/ СНиП 2.01.07-85*, «Нагрузки и воздействия»; (0,8-0,5) - аэродинамический коэффициент, устанавливается по СНиП или по таблице 2; kэкв –эквивалентное значение коэффициента k; γn – коэффициент надежности нагрузки γn =1,4; γf– коэффициент по назначению здания; В – шаг поперечных рам (грузовая ширина нагрузки на одну промежуточную поперечную раму).
Рис. 5. К определению эквивалентных ветровых нагрузок
Равномерно распределенную нагрузку выше уровня головы колонны при ручном счете удобно заменить сосредоточенной силой W, собранной с грузовой площади с размерами В(Н1 – Н). Слева W1=Pэкв(Н1-Н), справа W´1= P´экв(Н1-Н).
Поскольку в статическом расчете жесткость ригеля в плоскости поперечной рамы задается бесконечной, то сосредоточенную силу можно переносить вдоль линии ее действия. Перемещая силу W2 к силе W1, получим общее значение сосредоточенной силы W, действующей на раму на уровне оголовка колонны (низа стропильной конструкции).
W = W1 + W2 = (Pэкв+ PCэкв)(H1 – H).