Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

книги из ГПНТБ / Ривкин, Е. Ю. Прочность сплавов циркония

.pdf
Скачиваний:
41
Добавлен:
19.10.2023
Размер:
7.46 Mб
Скачать

СПИСОК ЛИТЕРАТУРЫ

1.Амаев А. Д. и др. Влияние некоторых факторов на наводороживание и изменение свойств циркониевого сплава с 1% ниобия, применяемого для оболочек тепловыделяющих элементов в энергетических реакторах, ох­ лаждаемых водой.— Доклад № 342 (СССР), представленный на Третью международную конференцию по мирному использованию атомной энер­ гии, Женева, 1964.

2.Амаев А. Д. и др. Некоторые результаты петлевых испытаний в реакто­ ре МР опытных стержневых твэлов в оболочках из циркониевых спла­ вов.— В кн.: General Proceedings Conference on the Uses the Zirconium Alloys in Nuclear Reactors, Marianske Lazne 1968, p. 37.

3.Амаев А. Д. и др. Обоснование выбора циркониевого сплава для оболо­

чек твэлов серийных энергетических реакторов ВВЭР-440.— В кн.: Тру­ ды научно-технической конференции СЭВ «Атомная энергетика, топлив­ ные циклы, радиационное материаловедение», М., 1971, с. 503.

4.Амбарцумян Р. С. и др. Механические' свойства и коррозионная стой­ кость циркония и его сплавов в воде, паре и газах при повышенных тем­ пературах,— В кн.: Труды Второй международной конференции по мир­ ному использованию атомной энергии. Женева, 1958. Доклады советских учёных, т. 3, М., Атомиздат, 1959, с. 486.

5.Дроздовский Б. А., Морозов Е. М. О двух механических характеристи­ ках, оценивающих сопротивление разрушению.— «Заводск. лаборатория»,

1971, № 1, с. 78.

6.Емельянов В. С. и др. Механические свойства двойных и тройных спла­ вов циркония с титаном и 'ниобием при комнатной и повышенной тем­ пературах. — В кн.: Труды Второй международной конференции по мир­ ному использованию атомной энергии. Женева, 1958. Доклады советских ученых, т. 3, М., Атомиздат, 1959, с. 462.

7.Займовский А. С. и др. Тепловыделяющие элементы атомных реакторов. Изд. 2-е, М., Атомиздат, 1966, с. 214.

8.Займовский А. С. и др. Коррозионные и механические свойства цирко­

ниевого сплава, совместимого с углекислым газом. В кн.: General Pro­ ceedings Conference on the Uses of Zirconium Alloys in Nuclear Reac­ tors, Marianske Lazne. 1968, p. 351.

9.Иванов О. G., Григорович В. К. Структура и свойства сплавов цирко­ ния.— В кн.: Труды Второй международной конференции по мирному использованию атомной энергии, Женева, 1958. Доклады советских учё­ ных, т. 3, М., Атомиздат, 1959, с. 439.

10.Ластман Б., Керзе Ф. Металлургия циркония. Пер. с англ. М., Изд-во иностр. лит., 1959, с. 14.

11.Там же, с. 210.

12.Там же, с. 274.

13.Леонов М. Я., Панасюк В. В. Развитие мельчайших трещин в твердом теле,— «Прикладная механика», 1959, № 5, с. 391.

14.Лупаков И. С. и др. Влияние холодной деформации, температуры и

продолжительности отжига на термическое расширение сплава циркония с 2,5% ниобия,— «Атомная энергия», 1969, № 3, с- 236,

160

15.Макклинток Ф. А., Ирвин Дж. Р. Вопросы пластичности в механике разрушения.— В кн.: Прикладные вопросы вязкости разрушения. Пер. с

англ. Под ред. Б. А. Дроздовского. М., «Мир», 1968, с. 143.

16. Металловедение реакторных материалов. Т. 2, М., Атомиздат, 1962, с. 128.

17.Там же, с. 139.

18.Там же, с. 339.

19.Мулерин Ю. X. Чувствительность высокопрочной стали к коррозии под напряжением в зависимости от вязкости разрушения.— «Теоретические основы инженерных расчетов», 1966, № 4, с. 28.

20.Панасюк В. В. Предельное равновесие хрупких тел с трещинами. Киев, «Наукова думка», 1968, с. 118.

21.Петросьянц А. М. и др. Ленинградская атомная электростанция и пер­ спективы канальных кипящих реакторов.— Доклад № 715 (СССР), пред­ ставленный на Четвертую международную конференцию по мирному использованию атомной энергии, Женева, 1971.

22.Родченков Б. С. и др. Влияние наводороживания на термическое рас­

ширение сплава

циркония с 2,5% ниобия.— «Физико-химическая механи­

ка материалов»,

1969, № 5, с. 74.

23.Тарараева Е. М., Григорьев А. Г. Влияние железа, меди и хрома на механические и коррозионные свойства сплавов цирконий — никель — ниобий,— В кн.: Физико-хнмия сплавов циркония. Под ред. О. С. Ива­ нова. М., «Наука», 1968, с. 241.

24.Тимошенко С. П. Устойчивость упругих систем. М., Гос. изд-во техн,- теор. лит., 1955, с. 230.

25.Тиффани К. Ф., Мастерс Дж. Н. Прикладные вопросы механики разру­

шения.— В сб.: Прикладные вопросы вязкости и разрушения. Пер. с англ. Под ред. Б. А. Дроздовского. М., «Мир», 1968, с. 349.

26. Филатов В. М. и др. Регулирование термонагружения при малоцикло­ вых испытаниях.— «Заводск. лаборатория», 1970, № 7, с. 84.

27.Филатов В. М., Анихимовский Ю. А. Испытания на малоцикловую уста­ лость при изгибе, кручении и растяжении — сжатии.— «Заводск. лабора­ тория», 1971, № 12, с. 1487.

28.Филатов В. М. и др. Влияние наводороживания и ориентации гидридов

на

сопротивление малоцикловому

разрушению сплава

циркония

с

2,5%

ниобия.— «Физико-химическая

механика материалов»,

1971, №

6,

с. 62.

29. Хаул Д., Мур Б. Определение давления и времени, вызывающих потерю устойчивости оболочек твэлов в результате ползучести,— «Атомная тех­ ника за рубежом», 1969, № 9, с. 27.

30.Adensteat К. Phisikal thermal and electrical properties of Hf and Zr.— «Trans, of ASM», 1952, v. 44, p. 949.

31.Aitchinson, Honeycombe R. W. K., Johnson R. H. Properties of Reactor

 

Materials and

the

Effects of

Radiation

Damage.— In: Properties of Reac­

 

tor Materials

and

the Effects

of Radiation

Damage. Butterworths, bond.,

32.

1962,

p. 430.

Date

on World Wide Metals and Alloys, April, 1968.

Alloy

Digest,

33.

Ambler J. F. The

effect of temperature

on

the microindentation properties

 

of zirconium hydride.— AECL-2538, 1966.

 

 

34.ASME Boiler and Pressure Vessel Code, Sec III, ASME, United Enginee­ ring Center, No. 4, 1971.

35.

Aungst R. C., Deffering L. J. Crack propagation tests

on Zircaloy-2 reac­

 

tor pressure tubing in both the normal and hydrided

conditions.— ASTM

36.

STP 380, 1965, p. 451.

 

strain rate

Azzarto F. J. e. a. Irradiated in-pile and post-irradiation low

37.

tensile

properties

of Zircalov-4.— «J. Nucl. Materials»,

1969, No. 3, p. 208.

Babyak

W. e. a.

Effect of hydride morphology on the

tensile

properties

of Zircaloy-2. — ASTM STP 376, 1964, p. 76.

38.Baily e. a. Les Alliages de Zirconium-Curve utilises dans le gainage des elements combustibles des reacteurs eau lourdefgaz. — In: General Pro­

161

ceeding of Conference on the Uses Zirconium alloys in Nuclear Reactors, 1968, Marianske Lazne, p. 329.

39. Bangert L. Fliessgrenzerscheinungen in Zirconium — Zinn— Legierungen.— «Z. Metalkunde», 1959, Nr. 3, S. 269.

40.Beevers C. Fracture of Zirconium and Zirconium-Hydrogen Alloys.— «Trans. Met. Soc ASME», 1965, v. 233, p. 780.

41.Beevers C. On the fracture of zirconium containing zirconium hydride pre­

cipitates.— «Electrochem. Technology» 1966, v. 4, No 5—6, p. 222.

42.Bell L. AECL-1456, 1962.

43.Bement A. Effect of cold-work and neutron irradiation on the tensile pro­ perties of Zircaloy-2.— HW-74955, 1963.

44. Beston P. Development

of the zircaloy coolant tube to and fitting joint

for NPD 11— AECL-2063,

1969.

45.Boulton J. Some aspects of Materials in Organic Cooled Reactors — AECL-2640, 1966.

46. Boulton J. Zirconium Alloys for Use in Reactors.— AECL-3365, 1969.

47.Boulton J., Wright M. Ozhennite 0.5 — Its Potential and Development.— AECL-3492, 1969.

48.Brown B. F. A new Stress Corrosion Cracking Test for High-Strength Al­

 

loy.— «Materials Research and

Standards», 1966, No. 3,

p. 129.

49. Cheadle D.,

Ells C. The effects of crystallographic orientation on the frac­

 

ture dictility of Zr — 2.5 wt%

Nb and Zircalov-2 tubular

products.—

50.

«Trans. Met. Soc. ASME», 1965, No. 6, p. 1044.

 

 

Cheadle D.,

Ells

C., Evans W. The development of texture in Zirconium

51.

alloy tubes — «J.

Nucl. Materials», 1967, No. 2, p. 199.

Element Fabrica­

Chirigos J.

e. a.

Development

of

Zircaloy-4.— In: Fuel

52.

tion, IAEA,

bond.,

1961, v. 1, p. 19.

A Review.— «Appl.

Mat.

Res.», 1962,

Coffin L. F. Low

Cycle Fatique:

v. 1, No. 3, p. 129.

53.Coleman C., Hardie D. Grain-size dependence in the flow and fracture of alpha-zirconium. — «J. Inst, of Metals», 1966, v. 94, p. 387.

54.Coleman C., Hardie D. The hydrogen embrittlement of a-zirconium. A Re­

view.— «J. Les. Common Metals»,

1968, No. 3,

p. 273.

irradiation of

55. Cowan A., Langford W. J. Effect

of hydrogen

and neutron

the failure of flowed Zircaloy-2

pressure tubes. — «J. Nucl.

Mat.», 1969,

v. 30, No. 3, p. 271.

56.Cox B. Effect of Irradiation of the Oxidation of Zirconium Alloys in High

Temperature Aqueous Environments. A

Review.— «J.

Nucl.

Materials»,

1968, v. 28, No. 1, p. 1.

Neutron Irradiation on the mechanical proper­

57. Cupp C. R. The Effect of

ties of

Zirconium — 2.5% Niobium Alloy.— «J. Nucl. Materials»,

1962, v. 6,

No. 3,

p. 241.

 

 

Zr—2.5% Nb al­

58. Dalgaard S. Corrosion and hydriding behaviour of some

loys in water, steam and

various gases

at high temperature.— «Corrosion

of Reactor Materials, Vienna IAEA», 1962, v. 2, p. 159.

 

 

59. Dawson J. K. e. a. Third

U. N. Int. Conf. Peaceful Uses of Atomic Ener­

gy, A/conf. 28/P/1968, May

1964.

 

 

 

60.Dawson J. e. a. The Properties of Zirconium Alloys for Use in WaterCooled Reactors.— Доклад № 158 (Великобритания), представленный на Третью международную конференцию по мирному использованию атом­ ной энергии, Женева, 1964.

61.Douglass D. The physical metallurgy of zirconium.— «Atom. Energy Rev.», 1963, No. 1, p. 4.

62.Douglass D. The Metallurgy of Zirconium, IAEA, Vienna, 1971, p. 474.

63.Douglass D. Ibid, p. 154.

64.Douglass D. Ibid, p. 213.

65. Dugdall D. S. Yielding of

Steels Sheets containing Slits.— «J. Mech.

Phys. Solids», 1968, No. 8, p.

100.

66.Edmonds D., Beevers C. Some observations on discontinuous yielding in Zircoloy-2 — «J. Nucl. Materials», 1968, v. 28, No. 3, p. 345.

162

67.Edstrom J., Lagerberg G. Canning Materials for Water Reactors.— «Nucl. Engng», 1968, v. 13, No. 143, p. 348.

68.Ells C. e. a. Development of Zirconium-Niobium Alloys.— Доклад № 22 (Канада), представленный на Третью международную конференцию по мирному использованию атомной энергии, Женева, 1964.

69.Ells С., Sawatzky A. The effect of neutron irradiation on the tensile pro­

 

perties

Zr — 2.54 Nb — 0.5

Cu

Alloy. — «Trans.

Met.

Soc.

ASME»,

1965,

70

v. 233,

p. 2041.

 

of

neutron

irradiation

on

tensile

properties

of

Ells C., Fidleris V. Effect

71.

the Zr — 2.5% Nb Alloy. 1966,

v. 4, No. 5—6, p.

268.

properties

of

the

Ells C., Fidleris V. Effect

Neutron

irradiation on

Tensile

72.

Zr — 2,5% Nb

alloy.— «Electrochem

Technology»,

1966, N 5—6. p. 268.

 

Ells C., Cheadle B. Aging and Recovery in Cold Roled

Zr — 2.5 wt % Al­

73.

loy.— «J. Nucl. Materials»,

1967, v. 23, No. 3, p. 257.

 

 

 

 

 

Ells C., Williams C. The Effect of Temperature during Neutron Irradiation

74.

on Subsequent Deformation in

the Zr — 2.5% Nb

Alloy.— AECL-3054,

1968.

Ells C., Cheadle B. Anisotropy of Fracture Ductility

in

Flat Tension —

75.

Test Bars of Alpha Zirconium

Alloy.— ASTM STP-458, p. 68.

 

 

Ells C., Williams C. Beta Embrittlement of the

Zr — 2,5% Nb Alloy.—

76.

«Trans. Met

Soc. ASME»,

1969, v. 245, p. 1321

(AECL-3310, 1969).

 

the

El-Shanshaury e. a. The effect of Hydrogen and extension rates on

 

mechanical properties

of Zr — 1% Nb

alloy over

the

temperature range

30

 

to 600° C.— «J. Nucl.

Materials», 1968,

v. 28, No.

2,

p. 102.

 

 

 

77.Erdogan F., Kilber J. J. Fatigue and Fracture of Thin-Walled Tubes Con­ taining Cracks. First International Conference on Pressure Vessel Techno­

78.

logy, part II,

Netherlands, Sept. 29 — Oct. 2, 1969,

p.

771.

p.

351.

 

Erdogan

F.,

Kibler J. J. «Int. J. Fract. Mech.», 1969,

v. 5,

Fracture

79.

Erickson

W.,

Hardie D. The role of Hydride Precipitate in

the

 

of Zirconium

and Its Alloys.— «J. Inst. Metals»,

1965,

v.

93,

No. 12,

p.444.

80.Evans W., Parry G. The deformation behaviour of Zircaloy-2 containing

directionally oriented zirconium hydride.— «Electrochem. Technol.»,

1966,

v. 4, No. 5—6, p. 225.

Properties

of

Zirconium — Alloy Pressure

81. Evans W. e. a. Metallurgical

Tubes and Their Steel End-Fitting for CANDU Reactors.— Доклад

№ 159

(Канада), представленный на

Четвертую

международную конференцию

по мирному использованию атомной энергии,

Женева, 1971.

 

82.Farrow М., Watkins В. The Effect of Hydrogen on the Embritlement of Zirconium-Base Pressure Tubes.— «J. Nucl. Materials», 1965, v. 15, No. 3,

p. 118.

83.Fearnehough G. D., Watkins B. Application of the Crack Opening Displa­

 

cement

Approach to the Prediction of Pressurized Tube

Failure.— «Int. J.

84.

Fract. Mech.», 1968, v. 4, No. 3,

p.

232.

Zirconium

Alloy.— «J. Nucl. Ma­

Fidleris

V. Uniaxial in reactor

creep of

85.

terials», 1968, v. 26, No. 1, p. 51.

 

 

in-reactor

creep rate of heat-

Fidleris

V. The Stress-dependence of the

 

treated

Zr — 2,5% Nb and Cold-Worked

Zirca!oy-2.—■«J.

Nucl. Materials»,

86.

1970, v. 36, No. 3, p. 343.

Fracture of Cureved

Sheets.— «Engineering

Folias

E. S. On the Theory of

87.

Fracture Mechanics», 1970, v. 2, p. 151.

 

 

Nucl. Materials»,

Gilbert

E. R. In-reactor Creep

of

Zr — 2.5% Nb.— «J.

 

1968, v.

26, No. 1, p. 105.

 

 

 

 

 

88.Griffith A. The phenomena of rupture and flow in solids. «Philos. Trans. Roy. Soc.», 1920, v. 221, p. 163.

89.Hahn G. T., Sarrate M., Rosenfield A. R. Criteria for Crack Extension in

Cylindrical Pressure Vessels.— «Int. J. Fract. Mech.», 1969, v. 5, No. 3,

p. 187.

90.Harrison T. C., Fearnehough G. D. The Influence of Specimen Dimensions on Measurements of the Ductile Crack Opening Displacement.— «J. Fract. Mech.», 1969, v. 5, No. 4, p. 348,

163

91. Hindle E., Slattery G. Proceeding Conf. on the Effects of environment on Material Properties in Nuclear Systems, British Nuclear Energy Soc., Lond., 1971, p. 1.

92. Hindle E., Slattery G. The influence of proceeding variables on the grain structure and hydride orientation in Zircaloy-2 tubing.— «J. Inst. Metals», 1969, v. 93, No. 7, p. 565.

93.Hobson D. Texture Changes produced during Zircaloy-4 Tubing Fabrica­ tion.— ASTM STP-458, 1969, p. 37.

94.Holmes J. J. e. a. In-Reactor Creep of Coif-Worked Zircaloy-2.— In: Flow

and

Fracture of Metals and Alloy in

Nuclear

Environment

ASTM

STP-380, 1965, p. 380.

 

 

 

 

95. Howe L., Tomas W. Effect of Neutron irradiation

on the

tensile

proper­

ties

of Zircaloy-2.— «J. Nucl. Materials»,

1960, v. 2,

No. 3,

p. 248.

 

96. Howl D. A. The Prediction of Instantaneous Collapse Pressure for Fuel Cladding for Pressurized Water Reactor.— «J. Brit. Nucl. Energy Soc» 1965, v. 4, No. 4, p. 337.

97.Ibrahim E. F. An Equation for Creep of Cold Worked Zircaloy Pressure Tube Materials — AECL-2528, 1965.

98.Irwin G. R. Fracture Dynamics. In: «Fracture Metals», ASM, Clevelend, 1948, p. 147—166.

99.Irwin G. R. Relation of Crack Toughness Measurements to Practical Ap­ plications.— «Weld. J.», 1962, v. 41, No. 11, p. 519.

100. Irvin J. Effects of

irradiation and environment on the mechanical proper­

ties and hydrogen

pickup Zircalov.— Electrochem. Technol.», 1966 v 4

No. 5—6, p. 240.

Propagation Behavior of Zircaloy-2.— «Nucl Applic»

101. James

L. A. Crack

1969, v.

6, No. 4, p.

307.

102.James L. A. Environmentally Aggravated Fatigue Cracking of Zirca­ loy-2.— «Nucl. Applic.», 1970, v. 9, No. 2, p. 260.

103.Jung-Konig W. e. a. Properties and Technology of Zirconium Alloys with Niobium and Tin.— Доклад № 477 (ФРГ), представленный на Третью международную конференцию по мирному использованию атомной энер­ гии. Женева, 1964.

104.Jung-Konig W. е. a. Untersuchung des Einflusses der Neutronenbestrah-

 

lung auf

die Eigenschaffen der Legierung ZrNb3Sn 1.— «Atomkernener-

105.

gie», 1966, Bd. 11, Nr. 1—2, S. 47.

 

 

Program.— USAEC Re­

Klepfer

H. e. a. Specific Zirconium Alloy Design

106.

port GEAP-3979, 1962.

Zirconium

Alloy

Design

Program. — GEAP-4504,

Klepfer

H. e. a. Specific

107.

1964.

H. e. a. Specific

Zirconium

Alloy

Design

Program.— GEAP-55I6,

Klepfer

 

1967.

 

 

 

 

 

108.Klepfer H., Douglass D. Factor limiting the use of Zirconium alloys in superheated steam.— ASTM STP 376, 1968, p. 118.

109.Kreyns P. H„ Burkart M. W. Radiation-Enhanced relaxation in Zircaloy-4

 

and

Zr-2,5% Nb — 0.5% Cu Alloys.— «J. Nucl.

Materials»,

1968

v

26,

110.

No.

1, p.

87.

Structure of cold-rolled

Zircaloy-2 as

revealed

by

Lalit

K.,

Krishnan R.

 

X-ray diffraction and

electron microscopy.— «Trans. J. Inst,

of

Metals»,

111.

1972, v. 13, No. 1, p. 28.

of cold-worked Zircaloy-2

Langford

W. J. The

Metallurgical examination

pressure tube irradiation in the U-2 loop.— AECL-3457, 1969.

112. Langford W. J. Metallurgical properties of Cold-Worked Zircaloy-2 pressu­

re tubes Irradiated for Fire yeas in the

NPD

Reactor.— AECL-3516, 1970.

113. Lastman B. e. a. Zircaloy Cladding Performs

Well in PWR. — «Nucleo­

nics», 1961, v. 19, No. 1, p. 58.

behaviour of Zircaloy-2 tubing.—

114. Lee D. Recrystallization and mechanical

«J. Nucl. Materials», 1970, v. 37, No. 2, p.

159.

 

164

Н5.

Lees Ь. The

effect of production route,

aging time and

oxygen

content

116.

on properties

of Zr — 2.5% Nb.— «Corros. Sci.»,

1965,

v. 5,

No. 8, p.

565.

LeSurf J., Bryant O. The Effects of Water Chemistry

on

 

the Oxidation

117.

Zirconium Alloys Under

Radiation.— AECL-2797,

1968.

in Zirconium.—

Louthan

IW.,

Marshall R. Control of hydride orientation

118.

«J. Nucl, Materials.», 1963, v. 9, No. 2, p. 170.

 

 

 

Perform

Well

Lustman

B.,

Bleiberg M. L., Byron E. S. Zircaloy Cladding

119.

in PWR. — «Nucleonics»,

1961, v. 19, No. 1, p. 58.

 

 

 

 

 

N. Y.,

Manson S. S. Thermal Stress and Low-cycle Fatigue. McGraw-Hill,

120.

1966.

 

 

 

 

 

Zircaloy-2.— Procee­

Markowitz J. The thermal diffusion of hydrogen in

 

ding of

the

Second U. N. International

Conference on the

Peaceful

Uses

121.

of Atomic Energy, 1958, v. 6, p. 235.

 

 

 

 

 

 

 

Marshall

R. P., Louthan

M. R. Tensile Properties of Zircaloy with Orien­

 

ted Hydrides.— Proc. USAEC Symp. on

Zirconium

Alloy

Development,

 

GEAP-4089, 1962. p. 140.

 

 

 

 

 

 

 

 

122.

Marshall R., Louthan M. Tensile properties of Zircaloy with oriented hyd­

123.

rides.— «Trans. ASME»,

1963, v. 56, p. 506.

stress — oriental

hydrides

Marshall

R. Influence of

Fabrication history on

 

in Zircaloy tubing.— «J.

Nucl. Materials», 1967,

v. 24,

No.

 

1, p.

34.

 

124.Marhall R. Control Hydride orientation in Zircaloy by fabrication practi­ ce.— «J. Nucl. Materials», 1967, v. 24, No. 1, p. 49.

125.May M., Irmcher J. Einflub von kleinen Niobgehalten auf die Rekristalli-

zation

von Zirconium.— «Rekristallization metallisch

Werkstoffe», 1966,

No. 4,

S. 134.

 

Strain

on the Ben­

126. Mombray D. F. The Effects of 1 % Superimposed Mean

ding Fatugue Strength

of Zircaloy-4.— «Trans. ANS»,

1964,

v.

7,

No.

1,

p. 113.

 

 

 

 

 

 

 

127. Nichols R. W., Watkins

B. Implications of Embrittlement during

the

life

of a Zirconium Pressure

Tube Reactor.— TRC-Report,

1252 (c),

1966.

 

128.Nichols R. e. a. SGITWR and other heavy water reactors.— Proceeding Conference on Steam Generating and other Heavy Water Reactors, Lond.,

1968, p. 131.

129.Nihols F. A. Theory of the Creep of Zircaloy during neutron Irradiation.— «J. Nucl. Materials», 1969, v. 30, p. 249.

130.Nichols F. A. On the Mechanisms of Irradiation Creep in Zirconium-Base Alloys.— «J. Nucl. Materials», 1970, v. 37, p. 59.

131.Novak S. R., Rofle S. T. Comparision of Fracture Mechanics and Nominal

Stress Analyses in Stress Corrosion Cracking. — «Corrosion», 1970, v. 26, No. 4, p. 121.

132.Nuclear Power, World Reactor Chart, 1962, v. 7, No. 69.

133.New Heat Treatment Cuts Zircaloy-2 Corrosion, Hydrogen Embrittle­ ment.— «Nucleonics», 1963, No. 11, p. 70.

134.O’Donnel W. J., Langer B. F. Fatigue Design Basis for Zircaloy Compo­

135.

nents.— «Nucl. Sci. and Engineering»,

1964,

v. 20, No. 1, p. 1.

Fatigue

Orovan E. O. Fundamentals of Brittle

Behavior of Metals.— In:

136.

and Fracture of Metals, Wiley, N. Y., 1950, p. 139—167.

 

 

Page R. Engineering and performance

of Canada’s UO2 Fuel Assemblies

 

for Heavy-Water Power Reactors.— AECL-2929, 1968.

 

 

137.

Pankaskie P. J. Creep Properties of Zircaloy-2 for Design Application.—

138.

HW-75267, UC-25, 1962.

and

Propagation in

Zr — 2.5% Nb

Pankaskie P. J. Fatigue Crack Growth

 

Alloy Pressure Tubing. BNWL-1076, UC-25,

Metals, Ceramic and

Mate­

139.

rials, June, 1969.

and

Propagation in

Zr — 2.5% Nb

Pankaskie P. J. Fatigue-Crack Growth

 

Alloy Pressure Tube.— Application-Related Phenomena for

Zirconium and

 

Its Alloys, ASTM STP 458, 1969, p. 132.

 

of Crack Propagation

Laws.—

140. Paris P. C., Erdogan F. A. Critical Analysis

 

«J. Basic Eng.», 1963, v. 85, p. 528.

 

 

 

 

165

141.Parry G., Evans j . Occurarice of ductile hydride in Zircaloy-2. «Nucleo­ nics», 1964, v. 22, No. 11, p. 65.

142.

Parry

G. Stress

reorientation of hydrides in cold-worked

Zr — 2,5% Nb

 

pressure tube.— AECL-2624,

1966.

Irradiation on the Tensile Properties

143. Parry

G. The effect of Fast

neutron

 

of

Specimens

from

Cold-Worked

Zd.— 2.5%Nb

pressure

Tubes.—

144.

AECL-2625, 1966.

 

 

Design.— «Weld. J.», 1971,

v. 50,

No

3, p 89.

Pellini

W. S. Fracture-Safe

145. Pellini W. S. Ibid., p. 147.

Zircaloy-2 stainless steel

difusion

bonds.—

146.

Perona

G. e. a.

Study

of

147.

«J. Nucl. Materials», 1966, v. 18, No. 3, p. 278.

 

 

 

Picklesimer F. A. Preliminary Examination of the Formation and Utiliza­

148.

tion

of

Texture

and Anizatropy in

Zircaloy-2. — GEAP-4089, 1962, p. 11.

Power

Reactors 1969, Nuclear Engineering International, 1969.

1971.

149.

Power

and Research Reactors in Member States, IAEA, Vienna,

150.Progress in Measuring Fracture Toughness and Using Fracture Mechanics (Fith Report of a Special ASTM Committee). — «Materials Research and Standarts», 1964, v. 4, p. 107.

151. Robertson T. S. Propagation of Brittle Fracture in Steel.— «J. Iron and Steel Inst.», 1953, v. 175, p. 361.

152.Ross-Ross P. A. Fuel Channel development for Canada’s Power Reac­ tors.— AECL-3126, 1968.

153.Ross-Ross P. A., Hunt С. E. L. The in-reactor Creep of Cold-Worked Zir-

caloy-2 and Zr — 2.5% Nb Pressure Tubes — «J. Nucl. Materials», 1968,

v. 26, No. 1, p. 2.

154.Rowe R. G., Hoagland R. G. The Effects of Cold Work, Thermal Trearment and Neutron Irradiation on the Fracture Toughness of Zircaloy-2.— Radiation on Structural Metals, ASTM STP 457, 1969, p. 3.

155.Rubel H. e. a. Wasserstoffaufnahme und Wasserstoffversprodung Von Zir­

156.

caloy-2,

ZrNbl und ZrNb2,5.— «Nucleonik»,

1964,

Bd. 6, FI. 4, S. 159.

Ruckdeschel

W., Wiencierz

P.

Entwicklung

Korrosionsbestandigar

Zirco­

 

nium— Niob — Legrerungen

mit

hoher Fostigkeittur

Kernreaktoren

1968,

157.

S. 117.

R.

Coefficients

of

thermal expansion

for

zirconium.«Trans.

Russel

 

А1МЕ»,

1954, v. 200, p.

1045.

 

 

 

 

 

 

158.Schreiber R. E., Allio R. J. Multiaxial Strain Fatigue in Zircaloy-4.— «Electrochem. Technol.», 1966, v. 4, No. 5—6, p. 347.

159.Seddon B. J. Zirconium Data Mannal Properties of Interest in Reactor Design — Complied.— TRG-Report, 1962, p. 108.

160.Sinha T., Arunachalam V. Influence of texture on mechnical properties of

Zircaloy-2 containing stress-oriented hydrides.— Govt India Atomic Energgy Commis. BARC-367, 1968.

161.Skelly H„ Dixon C. F. Zirconium-refractory alloys.«J. Less Common Metals.», 1971, v. 23, No. 8, p. 415.

162.Slattery G. The effects of hydride on the thermal expansivity of Zirconium alloys.— «Less Common eMtals», 1966, No. 2, p. 89.

163.Slattery G. F. The Prediction of Collapse Pressure for Anisotropic Zirca­

 

loy-2 Tubing Using Tensile Stress-Strain

Date. — TRG-Report

1476 (s),

164.

1967.

 

 

 

 

 

 

 

Slattery G. The Terminal Solubility of Hydrogen in Zirconium Alloys Bet­

165.

ween 30

and 400f'C .— «J. Inst,

of Metals»,

1967, v. 95, No. 2,

p.

43.

Slattery G. The Mechanical Properties of

Zircaloy-2 Tubing

'

Containing

166.

Circumferentially Aligned Hydride. Ibid., p. 95.

 

 

Soo P., Higgins G. The deformation of Zirconium-oxygen single crys­

167.

tals.— «Acta metallurgica»,

1968, v. 16, p. 177.

Fuel

Sheat­

Steward

K. The properties

of

Cold-Worked Zr — 2,5% Nb

hing.— AECL-2250, 1965.

168.Steward K-, Cheadle B. The effect of preferred orientation on mechanical properties and deformation behaviour of Zircaloy-2 fuel sheathing.— AECL-2627, 1966.

166

169.

Tenckhoff

E.,

Rittenhouse

P.

Annealing

textures

in

Zircaioy

tubing.—

170.

«J. Nucl. Materials», 1970, v. 35, No. 1, p. 14.

 

 

and

Texture

gradients

Tenckhoff

E., Rittenhouse P. Texture Development

171.

in Zircaioy Tubing.— ASTM STP-458,

1969, p. 50.

Opening

Displacement

Terry P.,

Barnby

J. T. Determing

Critical

Crack

 

for oncet

of

slow

Tearing

in

Steels.— «Metal

Construction

and

British

172.

Weld J.», Sept. 1971, v. 3, No. 9, p. 345.

 

 

IAEA, Vienna,

1961,

p.

3.

Tomas

W. R. Fuel Element Fabrication, v. 1,

 

173. Tomas

W. e. a. Irradiation

Experience with

Zircaloy-2.— Доклад

21

 

(Канада), представленный на Третью международную конференцию по

174.

мирному использованию атомной энергии. Женева, 1964.

joinst

prepared

Tuffin

W. е. a. Tubular stainless steel-zircaloy transition

175.

by tandem extrusion.— NMJ-7216,

1962.

 

 

 

 

 

 

specimens

oi

Walters

G. The ductility of hydrogenated Zirconium sheet

176.

varying thicknes.— AERE-R 4981,

1965.

 

 

Preliminary Observation

of

Wanhill

R. J. H., Ryder D. A., Davies T. J.

 

 

the Fatigue of Hydr’ided and Unhydr:4ed Zircaloy-2 at Room Temperatu­

177.

re.— «J. Inst,

of Metals»,

1968, v. 96, No. 2, p.

59.

 

 

deformation

and

Warren

M.,

Beevers C.

The

interrelationship

between

 

 

crack nucleation and propagation in zirconium containing hydride precipi­

 

tates.— 1968, v. 26, p. 273.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

178. Watkins

B., Cockaday R. E. Development of Zirconium Alloy Pressure Tu­

 

bes for

Winfrith Heath Steam Generating Heavy Water

Reactors.— TRC-

179.

Report

998 (C), 1965.

 

 

 

 

Zircaloy-2

Pressure

Tubes.— Applica­

Watkins

B. e. a. Embrittlement of

 

tions— Related

Phenomena

for

Zirconium

 

and

Its

Alloys.— ASTM

 

STP458,

1969, p.

141.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

180.Watkins B., Wood D. S. The Significance of Irradiation-Induced Creep of Reactor Performance of a Zircaloy-2 Pressure Tube.— Applications-Related

Phenomena for zirconium and Its Alloys,

ASTM STP-458,

1969,

p.

226.

181. Watkins B. Development and Performance of Zircaloy-2 Pressure Tubes.—•

Proc. of Symp. Prague, 10—14 Nov. 1969,

Int.

Atomic

Energy

 

Agency,

Vienna, 1970.

Holtz F. Susceptibility of Zirconium alloys

to

delayed failu­

182. Weinstein D.,

re hydrogen

embrittlement.— «Trans. ASM»,

1964, v. 57, No. 72,

p.

284.

183. Weiss V., Sessler J., Packman P. Effect of

Several

Parameters

on

Low

Cycle Fatigue Behaviour.— «Acta Metallurgica»,

1963,

v. 11,

No.

7,

p.

809

184.Wells A. A. Application of Fracture Mechanics at Beyond General Yieling.— «British Weld. J.», 1963, No. 10, p. 563.

185.Westlake D. Cross-Glide and Twining in crystals of quenched Zr — H al­ loys.— «J. Nucl. Metals», 1964, v. 13, No. 1, p. 113.

186.Westlake D. Initiation and Propagation of Microcracks in Crystals of Zir­ conium-hydrogen Alloys.— «Trans. ASM», 1963, v. 56, p. 56.

187.Wideman K. Die Eigenschaften von Zirkonlegierungen als Konstruktions-

werkstoffe

in

Kernreaktoren.— «Metall»,

1967, Bd. 21, Nr. 2,

S.

113.

188. Williams

G.,

Gilbert R. On

Structural

Factors Influencing

the

Strength

of Martensic

d’in Quenched.

Zr—2,5% Nb.— AECL-3092, 1968.

 

189.Williams C. Development Potential of Zirconium Alloys for High-Tempe­ rature Applications.— AECL-3698, 1970.

190.

Williams C., Ells

C. The influence of Niobium in Irradiation Strengthe­

191.

ning of Dilute Zr—Nb Alloys. — AECL-3134, 1968.

 

Winton

J., Murgatroyd

R. The

Effect of Variations in Composition and

 

Heat Treatment on

the

Properties of Zr—Nb Alloys.— «Electrochem. Tech-

192.

nol.», 1960, v. 4, p. 358.

 

Zr — 2,5% Nb

alloy in

annealed and cold

Winton

J. e. a. The Strength of

 

worked

condition.— Proceeding

Conf. Strength

Metals

and Alloys, Tokyo,

 

1968, p.

630.

 

 

 

 

 

193. Wood D. S., Winton J., Watwins B. The Effect of Irradiation on the Im­ pact Properties of Some Zirconium Alloys. — The Electrochemical Soc., Ins. Fall. Meeting, Buffalo, 1965, p. 1014.

167

ОГЛАВЛЕНИЕ

Введение

..................................................................................................................

 

 

 

3

Г л а в а

п е р в а я .

Область применения сплавов циркония

и особенно­

сти эксплуатации .........................................................................................................

 

 

 

б

1.1. Оболочки тепловыделяющих элементов и детали тепловыделяющих

7

сборок

.................................................................................................................

 

к а н а л ы

13

1.2. Технологические

 

Г л а в а

в т о р а я .

Физические свойства циркония и его сплавов . .

19

2.1. Модуль упругости и модуль сдвига.........................................

19

 

2.2. Тепловое расш ирение......................................................

23

2.3. Теплопроводность ......................................................................................

 

28

Г л а в а

т р е т ь я .

Кратковременные механические свойства циркония и

 

его сп л а в о в ..................................................................................................

 

 

30

 

3.1. Деформационное

поведение......................................................

30

 

3.2. Влияние легирования...................................................................

32

37

3.3. Влияние холодной деформации и термической обработки . . .

3.4. Влияние наводороживания и облучения..................................

50

 

Г л а в а ч е т в е р т а я .

Ползучесть циркониевых сплавов

. . . .

75

4.1. Ползучесть необлученных с п л а в о в .........................................

75

83

4.2. Влияние облучения на ползучесть сплавов циркония

. . . .

Г л а в а

п я т а я .

Сопротивление разрушению при циклическом нагру­

96

жении

.............................................................................................................................

 

 

 

5.1. Кривые усталости при изгибе и растяжении—сжатии

. . . .

96

5.2. Влияние нейтронного облучения и наводороживания на сопротив­

 

ление усталостному разрушению......................................................

105

 

5.3. Расчетные кривые усталости сплавов циркония....................

112

 

5.4. Развитие трещин при циклическом нагружении....................

115

 

Г л а в а

ш е с т а я .

Сопротивление хрупкому разрушению

. . . .

124

6.1. Влияние дефектов на сопротивление разруш ению ..............

124

125

6.2. Методы оценки

склонностиматериалов к хрупкому разрушению

6.3. Критическая температурахрупкости.............................................................

 

131

6.4. Торможение

т р е щ и н .....................................................................................

 

134

6.5. Инициирование т р е щ и н ..............................................................................

 

137

Г л а в а с е д ь м а я .

Устойчивость оболочек тепловыделяющих элементов

150

7.1. Мгновенная потеря устойчивости...............................................

150

155

7.2. Влияние ползучести на устойчивость оболочек твэлов

. . . .

Заклю чен и е ..................................................................................................

 

 

157

 

Список литературы .......................................................................

 

160

168

Соседние файлы в папке книги из ГПНТБ