Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

книги из ГПНТБ / Казацкер, А. А. Надежность систем автоматизации в пищевой промышленности

.pdf
Скачиваний:
5
Добавлен:
19.10.2023
Размер:
6.75 Mб
Скачать

показатели качества. Большинство САР технологических про­ цессов пищевой промышленности работает при наличии возму­ щающих воздействий, имеющих случайный характер, что объ­ ясняется действием большого числа разнообразных возмущаю­ щих факторов (частично даже неизвестных). Включения и пе­ реключения составляют пренебрежительно малый процент ш> времени от общей длительности работы системы. В этих усло­ виях для характеристики качества САР используются статисти­ ческие показатели (среднее квадратическое отклонение текуще­ го или среднего значения параметра и др.). Для таких систем допуски задаются в форме динамических допусков для текущих

значений

параметра или

статических — для

средних

значе­

ний [19].

В дальнейшем

речь будет идти

только об

этих

видах допусков. Поле допуска может быть несимметричным от­ носительно номинального значения.

Чтобы наметить подход к методике определения конкретных величин каждого вида допусков САР, необходимо провести в общем виде анализ работы реальных САР с точки зрения вы­ полнения заданных функций.

Как указывалось, автоматическое регулирование большинст­ ва технологических процессов протекает при наличии возмуща­ ющих воздействий, имеющих случайный характер. Вследствие этого значения регулируемых величин являются случайными функциями времени. Принято считать, что изменения регули­ руемых технологических величин во времени могут описывать­ ся с помощью методов случайных стационарных процессов [21].

Большинство промышленных объектов при небольших от­ клонениях от установившихся режимов могут рассматриваться как линейные. Поэтому случайный процесс на выходе системы имеет закон распределения, близкий к нормальному [22, 23]. Можно считать, что колебания регулируемой величины .на вы­ ходе САР имеют характер, близкий к случайному стационар­ ному процессу с нормальным законом распределения.

Следовательно, показатели качества работы САР, в том числе и показатели точности, при изменениях регулируемых величии во времени, носящих характер случайных стационар­ ных процессов, должны быть статистическими характеристиками этих случайных процессов [21].

Если характеризовать качество работы САР такими стати­ стическими показателями, как математическое ожидание ту и среднее квадратическое отклонение ау регулируемой величи­ ны, то отклонение среднего значения регулируемой величины от номинального значения (статическая ошибка) будет опреде­ ляться величиной ту, а динамическая ошибка — в основном величиной оу. Очевидно, что эти же статистические характери­ стики должны быть положены в основу при определении соот­ ветствующих видов допусков.

Рассмотрим сначала возможный подход к определению ди-

30

намических допусков. Это можно сделать, исходя из технологи­ ческих и экономических факторов, в частности из убытков (тех­ нологических потерь), которые могут возникнуть при выходе регулируемого параметра за заданные уровни. Для определения этого ущерба для САР, обладающих конкретными значениями ту и ау, необходимо знать среднее число выходов п за динами­ ческий допуск (динамических отказов) в единицу времени, сред­ нюю длительность одного динамического отказа т и среднее значение процента времени, в течение которого регулируемая величина будет находиться в пределах допуска П.

Все эти величины можно определить, пользуясь методами теории случайных функций [24]:

2

Д Д И Н

С

.2

адин

4 > QO CN

 

X =

'ьо с о

 

 

(30).

где

п - ф ( А г >

С OvfOy\

изменения регулируемого параметра.

 

ov2— дисперсия скорости

 

с2

а2

 

v

d t 2 К у (х) t= 0 j

здесь Ку(т) — корреляционная функция центрированной случайной функции; Адпн — величина динамического допуска;

Ф (и) — интегральная

функция Лапласа (табличные значения имеются

в литературе

[14]).

 

 

a

zi

го

Значение С может быть определено экспериментально по диа­

граммам с записью регулируемой величины,

содержащей не ме­

нее

20—30 пересечений

значений

ту. При этом

С « лN0,

где

N0— среднее число пересечений

ту за

единицу

времени.

В реальных САР пищевой промышленности значение N0 колеб­

лется в пределах 3—8 в час.

 

 

 

 

Для расчетов с помощью выражений (28—30) примем

 

Адин. в — Уз

ту> Аш„. н = m-у

ун,

 

гДе ув и г/в — максимальное (верхнее) и минимальное (нижнее) допустимые значения регулируемого параметра.

31

Обычно принимают Адин. в = Адан, п = Адан- Если же Адин. в ¥= Адин.н, то в выражения (28) и (29) вместо

А д 1Ш подставляют значения А дин. в или А дин.н и, разделив пополам значение, полученное по выражению (28) , получают число и дли­ тельность пересечения верхнего и нижнего допусков со­ ответственно.

Из выражений (28), (29) и (30) видно, что практически для определения значений п, т и П необходимо знать (либо задаться) величины А дин и ау либо их отношение. Если при обосновании допусков величина ау неизвестна, наиболее удобно задаваться отношением А ДПн/сГу. Так, например, выбрав из технологических соображений значения ун и ув и приняв С « 20, для А дин = ау получим, что значения регулируемого параметра в среднем око­ ло 4 раз в час будут выходить за динамический допуск, средняя длительность «выхода» равна 4,7 мин и в среднем 68% времени работы параметр будет находиться в пределах допуска.

Определяем допустимость этих значений с технологической и экономической точек зрения и в случае необходимости увели­

чиваем относительную величину А дин. Так, при А Д1Ш =

3ау выход

за динамический допуск будет возникать примерно

один раз

в сутки на 2 мин, что, вероятно, вполне приемлемо для любых технологических параметров.

На рис. 3 приведена кривая распределения значений регули­ руемого параметра и показаны границы статических и динамиче­ ских допусков.

Рис. 3. Кривая распределе­ ния значений регулируемо­ го параметра..

Таким образом, величина динамического допуска может за­ даваться в виде значений ув и ун, х и п либо ув, Уп и Адпн в нор­ мированном виде, либо только ув и уа— для первой группы тех­ нологических параметров.

При обосновании статического допуска необходимо опреде­ лить величину допуска Астат (или Астат, в и Астат, н) и время, за которое необходимо усреднить значения ту.

Из принятого допущения о стационарности процесса измене­ ний регулируемого параметра следует, что ту = const. В этом

■32

случае никакого усреднения значений ту не требуется. Однако на практике вследствие износа оборудования, загрязнения тепло­ передающих поверхностей, изменения характеристик приборов и т. п. изменения регулируемого параметра практически являют­ ся случайным процессом с «медленным» нестационарным харак­ тером. Для обоснования динамических допусков такая нестационарностьне имеет практического значения, но на определении статических ошибок может сказаться. Поэтому в задание необ­ ходимо ввести еще и время усреднения.

Как величина статического допуска, так и время усреднения выбираются исходя из технологических и экономических сообра­ жений. Например, для системы, регулирующей крепость отбирае­ мого из ректификационной колонны спирта, статический допуск определяется допускаемыми отклонениями крепости спирта, ого­ воренными в ГОСТе, а время усреднения можно определить ис­ ходя из величины емкости и скорости ее заполнения. Кроме того, для такой системы существуют ограничения, которые можно рас­ сматривать как аварийные. Речь идет о недопущении в спирте примесей, которые могут появиться при очень больших колеба­ ниях расхода отбираемого спирта.

Из сказанного следует, что наиболее рациональными можно считать следующие формы задания допусков:

1. Допустимые кратковременные отклонения регулируемых параметров от заданного значения (динамические допуски) за­ дают в виде:

а) верхней (наибольшей) и нижней (наименьшей) границ те­ кущего значения регулируемого параметра, выход за которые не допускается;

б) верхней и нижней границ текущего значения регулируемо­ го параметра и максимального времени, в течение которого вы­ ход за верхнее и нижнее значения регулируемого параметра (^доп. в и ^доп. н) допускается.

2. Допустимые длительные отклонения регулируемых пара­ метров от заданного значения (статические допуски) задают в виде верхней и нижней границ среднего значения регу­ лируемого параметра и времени, за которое должно произво­ диться усреднение (1у0р).

Если задаются только статические допуски, то кратковремен­ но допустимы любые отклонения текущего значения регулируе­ мого параметра, не превышающие аварийных значений.

3. Сочетания допусков групп 1а и 2; 16 и 2 (За и 36). Важность правильного выбора формы и количественных зна­ чений допускаемых отклонений регулируемых параметров в САР очевидна. Допуски определяют не только степень соблюдения технологических режимов, но и длительность, стоимость разра­ ботки, сложность, надежность применяемой аппаратуры, т. е. при прочих равных условиях определяют технико-экономический эф­

3—308

33

фект, получаемый от применения САР. Форма и значения допу­ сков САР пищевой промышленности зависят от многих факторов: вида и качества сырья,^ипа и состояния технологического обору­ дования, существующего уровня технологического процесса и т. п. Точное технико-экономически обоснованное значение допу­ сков может быть выбрано только для каждого конкретного слу­ чая и, как правило, в результате специальной исследовательской работы. Такого рода работы проводятся в различных организа­ циях и обычно требуют значительных затрат времени и средств, поэтому делать это имеет смысл только для крупных и важных объектов. В остальных случаях можно обойтись приближенны­ ми обоснованиями.

Ниже даются некоторые, в основном качественные, рекомен­ дации, которые позволяют в ряде случаев выбрать форму и при­ мерное значение допусков.

Допуски на регулируемые параметры САР должны опреде­ ляться исходя из требований автоматизируемого технологическо­ го процесса и возможности аппаратурной реализации САР на существующих приборах и средствах автоматизации. Поэтому представляется, что допуски должны устанавливаться в общем случае в три стадии:

при составлении технологических требований; при разработке технического задания, когда в процессе

проектных или исследовательских работ определяются возмож­ ности аппаратурной реализации с учетом априорно определен­ ных характеристик точности и надежности САР;

после длительных производственных испытаний опытного об­ разца САР с учетом фактических эксплуатационных характери­ стик, при разработке технических условий или задания на проек­ тирование для дальнейшего широкого внедрения.

Большинство технологических процессов пищевой промыш­ ленности может быть разбито на типовые элементарные процес­ сы, такие, как нагрев, выпаривание, экстрагирование, сушка, пе­ ремешивание и т. п. Ш- Задача регулирования технологических процессов состоит в поддержании переменных, встречающихся в элементарных процессах, на заданном (номинальном) значе­ нии, в диапазоне, определяемом допусками. Номинальное значе­ ние переменных обычно выбирается таким, чтобы целевая функ­ ция элементарного процесса, связывающая выходной параметр этого процесса с входными переменными, находилась в районе частного оптимума. У большинства САР номинальные значения регулируемых величин остаются постоянными на значительных отрезках времени, т. е. в основном мы имеем дело с системами автоматической стабилизации входных либо выходных парамет­ ров элементарных процессов.

Аппаратурное оформление многих технологических процессов характеризуется наличием между аппаратами, реализующими элементарные процессы, промежуточных буферных емкостей, где:

34

тем или иным способом осуществляется перемешивание и, следо­ вательно, усреднение технологических характеристик. В этих случаях для САР, стабилизирующей значения выходного пара­ метра элементарного процесса, предшествующего перемешива­ нию, задавать динамические допуски нецелесообразно, за исклю­ чением случаев, когда при значительном отклонении текущего значения параметра возможны аварийные ситуации. Задание ди­ намических допусков также малоцелесообразно при очень боль­ ших постоянных времени по каналу регулирования или когда ап­ парат характеризуется явно выраженным свойством самовырав,- нивания.

Поскольку выходные параметры элементарных процессов, как правило, являются качественными характеристиками процес­ са (влажность, концентрация, кислотность и т. п.), датчиками САР выходных параметров служат автоматические приборы ка­ чества. Большинство промышленных автоматических приборов качества, выпускаемых в настоящее время серийно или опытны­ ми партиями, являются приборами периодического действия или имеют большое запаздывание из-за наличия пробоотборников и других устройств, подготавливающих пробы для анализа. Для САР с датчиками такого рода назначение динамического допу­ ска либо вообще не имеет смысла, либо должна оговариваться возможность значительных по времени «выбегов» за линию до­ пуска. Кроме того, в большинстве современных автоматических приборов качества (например, в газоанализаторах,' кислотоме­ рах, влагомерах и т. п.) параметры измеряемой среды опреде­ ляются по вторичным признакам. Б этих случаях между указы­ ваемой и фактически измеряемой прибором величиной обычно существует стохастическая зависимость. В связи с этим совре­ менные автоматические приборы качества обладают, как прави­ ло, значительными погрешностями и ширина поля допуска долж­ на быть не менее 6—10% от номинального значения.

Входными стабилизируемыми параметрами элементарных процессов являются обычно режимные характеристики (темпера­ тура, уровень, расход, давление и т. п.). Автоматическая стаби­ лизация таких параметров может осуществляться с малой по­ грешностью. Однако это не всегда рационально. Дело в том, что целевые функции элементарных процессов имеют часто весьма пологие, «размытые» оптимумы. И если номинальные значения входных параметров заданы так, чтобы значение выходного па­ раметра находилось где-то в центре оптимальной зоны, то цена отклонения обычно невелика и нет смысла сужать поле допуска, так как это влечет за собой использование более сложных, доро­ гих и менее надежных приборов.

В случаях, когда оптимум целевой функции элементарного процесса крутой либо когда целевая функция в области ограни­ чений монотонно изменяется и параметр необходимо поддержи­ вать на пороге ограничений, обязательно должны задаваться ди­

3*

Зё

намические допуски. При этом ширина поля допуска зависит от крутизны целевой функции или от четкости задания порога огра­ ничений, а максимально допустимое время нахождения парамет­ ра за полем допуска определяется конструкцией аппарата, в частности возможностями саморегулирования. Если саморегу­ лирование отсутствует и цена отказа велика, должна быть прак­ тически исключена возможность выброса значений регулируемо­ го параметра за линию допуска, т. е. значение среднего квадра­ тического отклонения регулируемого параметра должно быть в 3—4 раза меньше половины поля допуска.

При поддержании параметра на пороге ограничений удобно задавать односторонний динамический допуск с одновременным заданием статического допуска.

Для окончательного установления допусков необходимо опре­ делить возможность аппаратурной реализации САР. Это дости­ гается учетом с последующей экспериментальной проверкой ха­ рактеристик точности (погрешности) и надежности САР, реали­ зованной на конкретных приборах и средствах автоматизации. Характер учета этих характеристик удобно показать примени­ тельно к системам автоматической стабилизации.

Для удовлетворения требований технологического процесса необходимо, чтобы регулируемый параметр у был равен задан­ ному (номинальному) значению у3. Однако невозможно создать технические устройства без погрешностей, поэтому обычно ста­ вится требование, чтобы регулируемый параметр находился в пределах поля допусков, верхнюю и нижнюю границы которо­ го обозначим соответственно ув и ун. В этом случае технологиче­ ские требования записываются в виде г/н ^ У ^ Ув■Это условие можно записать в так называемой нормальной форме, т. е. в виде функции, которая была бы больше нуля:

у Ун>0; (

(31)

Ув —у>0. J

В процессе эксплуатации САР под влиянием различного рода возмещений, как внешних, так и внутренних, значение регулируе­ мого параметра изменяется. Погрешность выполнения прибли­ женного равенства у « у3 определяет качество работы САР и может характеризоваться на каждый данный отрезок времени средним квадратическим отклонением относительно у3 или, что

более удобно, двумя величинами: разностью е = у3у (где у — математическое ожидание регулируемого параметра) и величи­ ной ау— средним квадратическим отклонением относительно у [16]. ей Gy определяются значениями возмущающих воздей­ ствий, техническими характеристиками примененных приборов, характером взаимодействия между ними. Таким образом, уточ­ нение допусков с учетом характеристик точности САР сводится

36

кпроверке соблюдения условия (31) при реально достижимых е

и5 ,с учетом законов распределения величины у.

Поскольку с течением времени изменяются характеристики элементов САР (износ, изменение настройки и т. п.), значения s и оу являются функциями времени. Изменения во времени одной из этих величин либо обеих вместе учитываются характеристика­ ми надежности САР. которые в данном случае выступают как характеристики сохранения показателей точности САР во вре­ мени. На стадии проектирования можно использовать данные о связи между точностью и надежностью приборов автоматиза­ ции. Исследованиями [25] установлена корреляционная зависи­ мость, показывающая, что с увеличением точности применяемых приборов надежность их уменьшается.

Таким образом, для обеспечения «запаса» удовлетворения условия (31) необходимо обеспечить уменьшение е и оу, т. е. увеличить точность САР. С другой стороны, чем точнее приме­ няемые приборы, тем ниже их надежность и тем больше вероят­ ность нарушения условия (31). Приходится искать компромисс­ ные, оптимальные решения. В качестве примера необоснованно завышенных требований к точности средств автоматизации можно привести случай замены лабораторных анализов техноло­ гических параметров автоматическими анализаторами. При этом, как правило, требуют, чтобы погрешность анализатора не пре­ вышала погрешности заменяемого лабораторного анализа. Это приводит к резкому усложнению анализатора и. как следствие, к снижению его надежности. Литературные данные показывают, что уменьшение дискретности анализа (предел — непрерывное измерение) позволяет значительно снизить требования к точно­ сти автоматических анализаторов иногда в десятки раз [26],

Показатели безотказности систем автоматического регулирования

В изложенной выше методике обоснования допускаемых от­ клонений регулируемых параметров САР уже заложены основы для формулировки требований по надежности в виде ряда пока­ зателей [27, 28].

Для САР пищевой промышленности в качестве показателей безотказности следует применять параметр потока отказов со (t), наработку на отказ Т и вероятность безотказной работы за вре­ мя t Р (t) либо за число циклов с Р(с).

Основное целевое назначение САР — обеспечить нахождение регулируемого параметра в пределах допускаемых отклонений при эксплуатации в условиях, оговоренных в технической доку­ ментации. Выход регулируемого параметра за установленный допуск следует понимать как отказ САР.

Для характеристики САР технологических процессов принято задавать два вида допусков, накладывающих ограничения на

37

динамическую и статическую ошибки системы: динамический до­ пуск для текущих значений регулируемого параметра и статиче­ ский допуск для средних значений. С учетом этого показатель безотказности Рсар(0 следует рассматривать как вероятность отсутствия за время t выхода за соответствующий вид допусков.

Отказы САР по их проявлениям можно разбить на две груп­ пы. К первой целесообразно отнести отказы, проявляющиеся

в резком, значительном и продолжительном выходе

параметра

за допуск, приводящем в конечном счете к остановке

(выключе­

нию) САР. Причинами выключения САР в данном случае яв­ ляются в основном внезапные отказы отдельных аппаратов (эле­ ментов) системы. Безотказность САР, обусловленную такого ро­ да отказами, назовем аппаратной. Показатель безотказности, учитывающий вероятность отсутствия отказов первой группы, обозначим Ра (£).

Ко второй группе следует отнести отказы, проявляющиеся в относительно небольших и непродолжительных выходах пара­ метра за допуск (выбросах). Характеристики этих отказов зави­ сят от функциональных связей элементов САР, их статических и динамических характеристик, выбранных алгоритмов функцио­ нирования, постепенных отказов аппаратов (элементов) САР

ит. п. Такие отказы проявляются при определенном, случайно возникающем сочетании возмущающих воздействий. Выход за допуск при этом устраняется обычно без вмешательства обслу­ живающего персонала при исчезновении возмущений либо при отработке регулирующего воздействия системы. Безотказность САР, определяемую такими отказами, назовем функциональной

иобозначим через Рф(£).

Вобщем случае с учетом независимости обеих групп отказов вероятность отсутствия отказов САР определяется по формуле

^ сар( 0 - Л ( 0 ^ Ф(0.

(32)

В соответствии с двумя видами допусков целесообразно рас­ сматривать два вида отказов САР — динамические и статиче­ ские, а также два вида показателей P№m(t) и Рстат(() —вероят­ ности отсутствия за время t соответственно динамических и ста­ тических . отказов, определяющих функциональную надеж­ ность САР.

При независимости отказов

Рф ОТ — Рдин ОТ Р стат ОТ"

(33)

С точки зрения используемых для описания математических моделей все САР технологических процессов можно разбить на две группы: первая — САР, которые могут рассматриваться как квазилинейные; вторая — существенно нелинейные системы, си­ стемы позиционного, в основном двухпозиционного, регулирова­ ния.

38

В соответствии с имеющимися литературными данными изме­ нения регулируемого параметра на выходе квазилинейных САР приближенно могут быть описаны нормальной стационарной дифференцируемой случайной функцией. Рассматривая динами­ ческие и статические отказы как редкие выбросы за границы со­ ответствующих допусков, можно получить соотношение для вы­

числения оценок РдинСО и РСтат(0 по экспериментальным данным:

 

 

Рдин О ^ ехр (

^дин

,

(34)

где

содин — параметр потока динамических отказов.

 

 

^дин

- N 0mдИИехр

У

(35)

 

 

 

 

 

 

 

^ДИН — Удоп

т у .

 

(36)

здесь

ту и оу2— оценки математического

ожидания и дисперсии

регулируе­

 

мого параметра;

(при симметричном допуске);

 

 

удоп — граница допуска

текущим

 

ЛС.дин — среднее

число

пересечений в

единицу времени

 

значением регулируемого параметра линии ту.

 

Для проверки соблюдения статического допуска необходимо усреднить значения регулируемого параметра за время усредне­ ния и полученное значение сравнить с заданными границами ста­ тического допуска. Здесь речь идет о выборках и выборочных средних. В соответствии с теорией выборок для нормально рас­ пределенных величин выборочная средняя также распределена нормально. Поэтому для расчета иСгат(() и РСтат(() могут быть использованы приведенные выше формулы с соответствующей за­ меной переменных.

В процессе эксплуатации возникают отказы элементов посте­ пенные и внезапные, которые проявляются в изменении величин Юдин(0 и (Остэт(0 при условии исключения отказов, вызывающих остановку САР. Таким образом, в процессе эксплуатации Р с а р (t) можно определить, получив значения Рэт н (() и РэСТат(() по диа­ граммам и используя записи в журналах учета отказов (ин­ декс «э» означает, что исходные данные получены по материалам эксплуатации данной САР). Исходные данные для определения

оценок ту, Оу, N0 можно получить при обработке диаграмм вто­ ричных регистрирующих приборов.

Если динамические характеристики и функциональные связи системы в процессе эксплуатации можно считать постоянными, то Яф(/) = const. В противном случае значение P${t) опреде­ ляется для каждого периода времени, для которого упомянутые характеристики можно считать постоянными.

39

Соседние файлы в папке книги из ГПНТБ