
Проверочные и экзамен / Вопросы к экзамену по операционным системам 080500
.pdf
Рис. 6.2. Загрузка процессора при различном числе процессов
Очевидно, что имеет смысл временно выгружать неактивные процессы, находящиеся в ожидании каких-либо ресурсов, в том числе очередного кванта времени центрального процессора. К моменту, когда пройдет очередь выполнения выгруженного процесса, его образ возвращается с диска в оперативную память. Если при этом обнаруживается, что свободного места в оперативной памяти не хватает, то на диск выгружается другой процесс.
Такая подмена (виртуализация) оперативной памяти дисковой памятью позволяет повысить уровень мультипрограммирования, поскольку объем оперативной памяти теперь не столь жестко ограничивает число одновременно выполняемых процессов. При этом суммарный объем оперативной памяти, занимаемой образами процессов, может существенно превосходить имеющийся объем оперативной памяти.
В данном случае в распоряжение прикладного программиста предоставляется виртуальная оперативная память, размер которой намного превосходит реальную память системы и ограничивается только возможностями адресации используемого процесса (в ПК на базе Pentium 232 = 4 Гбайт). Вообще виртуальным (кажущимся) называется ресурс, обладающий свойствами (в данном случае большой объем ОП), которых в действительности у него нет.
Виртуализация оперативной памяти осуществляется совокупностью аппаратных и программных средств вычислительной системы (схемами процессора и операционной системой) автоматически без участия программиста и не сказывается на логике работы приложения.
Виртуализация памяти возможна на основе двух возможных подходов:
свопинг (swapping) – образы процессов выгружаются на диск и возвращаются в оперативную память целиком;
виртуальная память (virtual memory) – между оперативной памятью и диском перемещаются части образов (сегменты, страницы, блоки и т.п.) процессов.
Недостатки свопинга:
избыточность перемещаемых данных и отсюда замедление работы системы и неэффективное использование памяти;
невозможность загрузить процесс, виртуальное пространство которого превышает имеющуюся в наличии свободную память.
Достоинство свопинга по сравнению с виртуальной памятью – меньшие затраты времени на преобразование адресов в кодах программ, поскольку оно делается один раз при загрузке с диска в память (однако это преимущество может быть незначительным, т.к. выполняется при очередной загрузке только часть кода и полностью преобразовывать код, может быть, и не надо).

Виртуальная память не имеет указанных недостатков, но ее ключевой проблемой является преобразование виртуальных адресов в физические (почему это проблема, будет ясно дальше, а пока можно отметить существенные затраты времени на этот процесс, если не принять специальных мер).
Концепция виртуальной памяти
В ВС с виртуальной памятью адресное пространство (АП) процесса (образ процесса) во время выполнения хранится во внешней памяти ЭВМ и загружается в реальную память по частям динамически по необходимости в любое свободное место РОП. Однако программа ничего не знает об этом, написана и выполняется так, как будто полностью находится в РОП.
Виртуальная память - это моделирование оперативной памяти во внешней памяти.
Механизм отображения виртуальных и реальных адресов устанавливает между ними соответствие и называется динамическим преобразованием адресов (ДПА).
Компьютер здесь уже выступает как логическое устройство, а не физическая машина с уникальными характеристиками. ДПА поддерживается на аппаратно-микропрограммном уровне. В МП Intel, начиная с 386 процессора, выполняется поддержка виртуальной памяти.
Такая процедура выполняется для EC ЭВМ - ряд 2 и выше, для СМ ЭВМ1700, для IBM PC – I386 и выше.
При управлении виртуальной памятью смежные виртуальные адреса не обязательно будут смежными реальными адресами (искусственная смежность). Программист освобождается от необходимости учитывать размещение своих процедур и данных в РОП. Он получает возможность писать программы наиболее естественным образом, прорабатывая лишь детали алгоритма и структуру программы, игнорируя конкретные особенности структуры аппаратных средств.
Механизм ДПА предполагает ведение таблиц, показывающих какие ячейки ВП в текущий момент времени находятся в РОП и где именно. Поскольку индивидуальное отображение элементов информации (пословное или побайтовое) не имеет смысла (так как под таблицы отображения адресов потребовалось бы РОП больше чем под процессы), то отображение адресов выполняется на уровне блоков ОП.
Рисунок 1. Динамическое преобразование адресов
Проблема: какую часть процессов держать в ОП, в некоторые моменты времени, выталкивая одни участки РОП и размещая другие.
Еще один вопрос, который необходимо решать: Каким сделать размер блока?

Увеличение размера блока приводит к уменьшению размера таблицы отображения блоков, но увеличивает время обмена и, наоборот, уменьшение размера блока приводит к увеличению таблиц и уменьшению времени обмена с внешней памятью.
Блоки могут быть фиксированного размера (страницы) и переменного размера (сегменты). В этой связи существует четыре способа организации виртуальной памяти:
1.Динамическая страничная организация.
2.Сегментная организация.
3.Комбинированная сегментно-страничная организация.
4.Двухуровневая страничная организация.
Виртуальные адреса в страничных и сегментных системах являются двухкомпонентными и представляют собой упорядоченную пару (p,d), где p - номер блока (страницы либо сегмента), в которой размещается элемент, а d - смещение относительно начального адреса этого блока. Преобразование виртуального адреса V=(p,d) в адрес реальной памяти r осуществляется следующим образом. При активизации очередного процесса в специальный регистр процессора загружается адрес таблицы отображения блоков данного процесса. В соответствии с номером блока p из таблице отображения блоков, считывается строка, в которой устанавливается соответствие между номерами виртуальных и физических страниц для страниц, загруженных в оперативную память, или делается отметка о том, что виртуальная страница выгружена на диск. Кроме того, в таблице страниц содержится управляющая информация, такая как признак модификации страницы, признак невыгружаемости (выгрузка некоторых страниц может быть запрещена), признак обращения к странице (используется для подсчета числа обращений за определенный период времени) и другие данные, формируемые и используемые механизмом виртуальной памяти. К считанному физическому адресу размещения выбранного блока добавляется размер смещения d и вычисляется требуемый реальный адрес.
Рисунок 2. Преобразование виртуального адреса в реальной адрес памяти
Рассмотрим, в чем состоит стратегия управления виртуальной памятью? Аналогично управлению РОП для управления ВП имеется три категории стратегий, при имеющейся цели снизить ожидание страниц и располагать в РОП только используемые блоки.
Стратегия вталкивания, определяющая, когда следует переписать страницу или сегмент из внешней памяти в ОП.
а) вталкивание по запросу - система ожидает ссылки на страницу/сегмент от выполняющегося процесса (прерывание по отсутствию страницы);
аргументы за:
путь выполнения программы наверняка предсказать невозможно;
гарантия расположения в ОП только нужных страниц;
накладные расходы на определение требуемых страниц минимальны;
аргументы против:
подкачка по одному блоку приводит к увеличению общего времени ожидания.
б) упреждающее вталкивание предполагает, что система может предвидеть необходимость использования в дальнейшем страницы/сегмента. Если вероятность обращений высока и есть свободная ОП, то соответствующие блоки переписываются в ОП.
Достоинство: сокращается время ожидания.
В настоящее время быстродействие аппаратуры увеличивается, и неоптимальные решения не приводят к уменьшению эффективности вычислительных систем.
Стратегия размещения, определяющая, куда поместить поступающую страницу/сегмент. В страничных системах - тривиально: в любой свободный блок (страница имеет фиксированный размер). В сегментных системах те же самые стратегии, что и для реальной ОП (в первую подходящую область, в наиболее подходящую, в наименее подходящую).
Стратегия выталкивания (замещения), определяющая, какую страницу/сегмент удалить из ОП для освобождения места поступающей страницы.
Здесь основная проблема "пробуксовки", при которой вытолкнутая страница в следующий момент должна вновь размещаться в РОП.
Рассмотрим процедуры определения блоков для выталкивания из ОП.
а) выталкивание случайной страницы - в реальных системах не применяется;
б) выталкивание первой пришедшей страницы (FIFO - очередь). Для ее реализации необходимо устанавливать временные метки страниц.
Аргумент: у страницы уже были возможности использовать свой шанс.
Фактически: большая вероятность заместить активно используемые страницы, поскольку нахождение страниц длительное время может означать, что она постоянно в работе. Например, используемый редактор текстов.
в) выталкивание дольше всего неиспользованных страниц.
Для реализации необходимо реализовать обновляемые временные метки. Эвристический аргумент: - недавнее прошлое - хороший ориентир на будущее.
Недостаток - существенные издержки: постоянное обновление временных меток.
г) выталкивание реже всего используемых страниц - предполагает наличие счетчиков страниц
(менее интенсивно, нежели обновляемые временные метки). Интуитивно оправдано, но тоже может быть не рационально.
д) выталкивание не использующихся в последнее время страниц - самый распространенный алгоритм с малыми издержками. Реализуется двумя аппаратными битами на страницу:
1.признак обращения 0 - было
1 - не было.
2.признак модификации записи 0 - неизменен.
1 - изменен.
Возможны следующие варианты комбинаций {00,10,01,11}. Если изменений на странице не было, то страницу можно просто переписать, а не сохранять на диске.

26. Методы распределения оперативной памяти без использования внешней памяти.
Все методы управления памятью могут быть разделены на два класса: методы, которые используют перемещение процессов между оперативной памятью и диском, и методы, которые не делают этого (рисунок 2.8). Начнем с последнего, более простого класса методов.
Рис. 2.8. Классификация методов распределения памяти
Распределение памяти фиксированными разделами
Самым простым способом управления оперативной памятью является разделение ее на несколько разделов фиксированной величины. Это может быть выполнено вручную оператором во время старта системы или во время ее генерации. Очередная задача, поступившая на выполнение, помещается либо в общую очередь (рисунок 2.9,а), либо в очередь к некоторому разделу (рисунок 2.9,б).
Рис. |
2.9. |
Распределение |
памяти |
фиксированными |
разделами: |
а - с общей очередью; б - с отдельными очередями |
|
|
Подсистема управления памятью в этом случае выполняет следующие задачи:

сравнивая размер программы, поступившей на выполнение, и свободных разделов, выбирает подходящий раздел,
осуществляет загрузку программы и настройку адресов.
При очевидном преимуществе - простоте реализации - данный метод имеет существенный недостаток - жесткость. Так как в каждом разделе может выполняться только одна программа, то уровень мультипрограммирования заранее ограничен числом разделов не зависимо от того, какой размер имеют программы. Даже если программа имеет небольшой объем, она будет занимать весь раздел, что приводит к неэффективному использованию памяти. С другой стороны, даже если объем оперативной памяти машины позволяет выполнить некоторую программу, разбиение памяти на разделы не позволяет сделать этого.
Распределение памяти разделами переменной величины
В этом случае память машины не делится заранее на разделы. Сначала вся память свободна. Каждой вновь поступающей задаче выделяется необходимая ей память. Если достаточный объем памяти отсутствует, то задача не принимается на выполнение и стоит в очереди. После завершения задачи память освобождается, и на это место может быть загружена другая задача. Таким образом, в произвольный момент времени оперативная память представляет собой случайную последовательность занятых и свободных участков (разделов) произвольного размера. На рисунке 2.10 показано состояние памяти в различные моменты времени при использовании динамического распределения. Так в момент t0 в памяти находится только ОС, а к моменту t1 память разделена между 5 задачами, причем задача П4, завершаясь, покидает память. На освободившееся после задачи П4 место загружается задача П6, поступившая в момент t3.
Рис. 2.10. Распределение памяти динамическими разделами
Задачами операционной системы при реализации данного метода управления памятью является:
ведение таблиц свободных и занятых областей, в которых указываются начальные адреса и размеры участков памяти,
при поступлении новой задачи - анализ запроса, просмотр таблицы свободных областей и выбор раздела, размер которого достаточен для размещения поступившей задачи,
загрузка задачи в выделенный ей раздел и корректировка таблиц свободных и занятых областей,
после завершения задачи корректировка таблиц свободных и занятых областей.

Программный код не перемещается во время выполнения, то есть может быть проведена единовременная настройка адресов посредством использования перемещающего загрузчика.
Выбор раздела для вновь поступившей задачи может осуществляться по разным правилам, таким, например, как "первый попавшийся раздел достаточного размера", или "раздел, имеющий наименьший достаточный размер", или "раздел, имеющий наибольший достаточный размер". Все эти правила имеют свои преимущества и недостатки.
По сравнению с методом распределения памяти фиксированными разделами данный метод обладает гораздо большей гибкостью, но ему присущ очень серьезный недостаток - фрагментация памяти. Фрагментация - это наличие большого числа несмежных участков свободной памяти очень маленького размера (фрагментов). Настолько маленького, что ни одна из вновь поступающих программ не может поместиться ни в одном из участков, хотя суммарный объем фрагментов может составить значительную величину, намного превышающую требуемый объем памяти.
Перемещаемые разделы
Одним из методов борьбы с фрагментацией является перемещение всех занятых участков в сторону старших либо в сторону младших адресов, так, чтобы вся свободная память образовывала единую свободную область (рисунок 2.11). В дополнение к функциям, которые выполняет ОС при распределении памяти переменными разделами, в данном случае она должна еще время от времени копировать содержимое разделов из одного места памяти в другое, корректируя таблицы свободных и занятых областей. Эта процедура называется "сжатием". Сжатие может выполняться либо при каждом завершении задачи, либо только тогда, когда для вновь поступившей задачи нет свободного раздела достаточного размера. В первом случае требуется меньше вычислительной работы при корректировке таблиц, а во втором - реже выполняется процедура сжатия. Так как программы перемещаются по оперативной памяти в ходе своего выполнения, то преобразование адресов из виртуальной формы в физическую должно выполняться динамическим способом.
Рис. 2.11. Распределение памяти перемещаемыми разделами
Хотя процедура сжатия и приводит к более эффективному использованию памяти, она может потребовать значительного времени, что часто перевешивает преимущества данного метода.

27. Страничная организация виртуальной памяти.
Виртуальное адресное пространство каждого процесса делится на части одинакового, фиксированного для данной системы размера, называемые виртуальными страницами. В общем случае размер виртуального адресного пространства не является кратным размеру страницы, поэтому последняя страница каждого процесса дополняется фиктивной областью.
Вся оперативная память машины также делится на части такого же размера, называемые физическими страницами (или блоками).
Размер страницы обычно выбирается равным степени двойки: 512, 1024 и т.д., это позволяет упростить механизм преобразования адресов.
При загрузке процесса часть его виртуальных страниц помещается в оперативную память, а остальные - на диск. Смежные виртуальные страницы не обязательно располагаются в смежных физических страницах. При загрузке операционная система создает для каждого процесса информационную структуру - таблицу страниц, в которой устанавливается соответствие между номерами виртуальных и физических страниц для страниц, загруженных в оперативную память, или делается отметка о том, что виртуальная страница выгружена на диск. Кроме того, в таблице страниц содержится управляющая информация, такая как признак модификации страницы, признак невыгружаемости (выгрузка некоторых страниц может быть запрещена), признак обращения к странице (используется для подсчета числа обращений за определенный период времени) и другие данные, формируемые и используемые механизмом виртуальной памяти.
Рис. 2.12. Страничное распределение памяти
При активизации очередного процесса в специальный регистр процессора загружается адрес таблицы страниц данного процесса.
При каждом обращении к памяти происходит чтение из таблицы страниц информации о виртуальной странице, к которой произошло обращение. Если данная виртуальная страница находится в

оперативной памяти, то выполняется преобразование виртуального адреса в физический. Если же нужная виртуальная страница в данный момент выгружена на диск, то происходит так называемое страничное прерывание. Выполняющийся процесс переводится в состояние ожидания, и активизируется другой процесс из очереди готовых. Параллельно программа обработки страничного прерывания находит на диске требуемую виртуальную страницу и пытается загрузить ее в оперативную память. Если в памяти имеется свободная физическая страница, то загрузка выполняется немедленно, если же свободных страниц нет, то решается вопрос, какую страницу следует выгрузить из оперативной памяти.
Вданной ситуации может быть использовано много разных критериев выбора, наиболее популярные из них следующие:
дольше всего не использовавшаяся страница,
первая попавшаяся страница,
страница, к которой в последнее время было меньше всего обращений.
Внекоторых системах используется понятие рабочего множества страниц. Рабочее множество определяется для каждого процесса и представляет собой перечень наиболее часто используемых страниц, которые должны постоянно находиться в оперативной памяти и поэтому не подлежат выгрузке.
После того, как выбрана страница, которая должна покинуть оперативную память, анализируется ее признак модификации (из таблицы страниц). Если выталкиваемая страница с момента загрузки была модифицирована, то ее новая версия должна быть переписана на диск. Если нет, то она может быть просто уничтожена, то есть соответствующая физическая страница объявляется свободной.
Рассмотрим механизм преобразования виртуального адреса в физический при страничной организации памяти (рисунок 2.13).
Виртуальный адрес при страничном распределении может быть представлен в виде пары (p, s), где p - номер виртуальной страницы процесса (нумерация страниц начинается с 0), а s - смещение в пределах виртуальной страницы. Учитывая, что размер страницы равен 2 в степени к, смещение s может быть получено простым отделением k младших разрядов в двоичной записи виртуального адреса. Оставшиеся старшие разряды представляют собой двоичную запись номера страницы p.