
Модели языка
В М. л. разрабатываются также аналитические модели языка, в которых на основе тех или иных данных о речи, считающихся известными, производятся формальные построения, результатом которых является описание некоторых аспектов строения языка. В этих моделях обычно используется несложный математический аппарат — простые понятия теории множеств и алгебры; поэтому аналитические модели языка иногда называют теоретико-множественными. В аналитических моделях наиболее простого типа исходными данными служат множество правильных предложений и система окрестностей — совокупностей «слов», принадлежащих одной лексеме (например, {дом, до́ма, дому, домом, доме, дома́, домов, домам, домами, домах}). Простейшим производным понятием в таких моделях является замещаемость: слово a замещаемо на слово b, если всякое правильное предложение, содержащее вхождение слова a, остается правильным при замене этого вхождения вхождением слова b. Если а замещаемо на b и b на a, говорят, что a и b взаимозамещаемы. (Например, в русском языке слово «синий» замещаемо на слово «голубой»; слова «синего» и «голубого» взаимозамещаемы.) Класс слов, взаимозамещаемых между собой, называется семейством. Исходя из окрестностей и семейств, можно получить ряд других лингвистически значимых классификаций слов, одна из которых приблизительно соответствует традиционной системе частей речи. В другом типе аналитических моделей вместо множества правильных предложений используется отношение потенциального подчинения между словами, означающее способность одного из них подчинять себе другое в правильных предложениях. В таких моделях можно получить, в частности, формальные определения ряда традиционных грамматических категорий — например, формальное определение падежа существительного, представляющее собой процедуру, которая позволяет восстановить падежную систему языка, зная только отношение потенциального подчинения, систему окрестностей и множество слов, являющихся формами существительных.
В аналитических моделях языка используются простые понятия теории множеств и алгебры. К аналитическим моделям языка близки дешифровочные модели — процедуры, позволяющие по достаточно большому корпусу текстов на неизвестном языке без каких-либо предварительных сведений о нём получить ряд данных о его структуре.