
- •Министерство образования и науки Российской Федерации
- •Лекция 1. Введение.
- •Лекция 2. Структура подсистемы обмена с ву
- •Лекция 3. Регистры ву
- •3.1. Виды регистров внешних устройств
- •3.2. Виды адресации регистров ву
- •Лекция 4. Алгоритм обмена без прерываний
- •37Bh – не используется
- •Лекция 5. Прерывания
- •5.1. Механизм прерываний
- •5.2. Таблица векторов прерываний
- •Лекция 6. Изменения установок обработки прерываний
- •6.1. Маскирование прерываний
- •6.2. Изменение таблицы векторов прерываний
- •6.3. Обработчики прерываний
- •Лекция 7. Аппаратные прерывания
- •Лекция 8. Дисковые системы (Часть 1) Организация магнитного диска
- •Лекция 9. Дисковые системы (Часть 2) Функции bios для работы с дисками
- •Инициализация контроллера нмд
- •Лекция 10. Файловые системы (Часть 1)
- •Организация логического диска
- •Лекция 11. Файловые системы (Часть 2)
- •Файловые системы Windows
- •Лекция 12. Файловая системаntfs Главная файловая таблица
- •Последовательность обновления
- •Атрибуты
- •Типы атрибутов
- •Лекция 13. Атрибуты ntfs
- •Списки отрезков
- •Лекция 14. Анализ и восстановление файловой системы
- •Лекция 15. Управление памятью
- •Типы адресов
- •Методы распределения памяти без использования дискового пространства
- •Лекция 16. Виртуальная память
- •Лекция 17. Виртуальная память (продолжение)
- •Лекция 18. Иерархия запоминающих устройств
- •Лекция 19. Управление вычислительными процессами
- •Вытесняющие и невытесняющие алгоритмы планирования
- •Лекция 20. Синхронизация и взаимодействие процессов
- •V(b); /* Выход из критической секции */
- •Лекция 21. Архитектура драйвера файловой системы
- •Локальные fsd
- •Удаленные fsd
- •Работа файловой системы
- •Явный файловый ввод-вывод
- •Подсистема отложенной записи
- •Поток, выполняющий опережающее чтение
- •Драйверы фильтров файловой системы
- •Лекция 22. Windows api
- •Windows api— набор функций операционной системы
- •Лекция 23. WindowsApi(продолжение)
- •Окно рабочего стола
- •Приложение Windows
- •Компоненты окна приложения
- •Создание окна
- •Атрибуты окна
- •Класс окна
- •Имя окна
- •Стиль окна
- •Родитель или владелец окна
- •Расположение, размер и позиция в z-порядке
- •Идентификатор дочернего окна или дескриптор меню
- •Дескриптор копии приложения
- •Дополнительные данные
- •Дескрипторы окна
- •Создание главного окна
- •Сообщения, посылаемые при создании окна
- •Многопоточные приложения
- •Общие стили окна
- •Позиционирование
- •Взаимоотношения с родительским окном
- •Рамка окна
- •Компоненты неклиентской области окна
- •Заблокированное окно
- •Окна переднего плана и фоновые окна
- •Активное окно
- •Видимость
- •Свернутые, развернутые и восстановленные окна
- •Размер и позиция окна
- •Размер окна
- •Позиция окна
- •Размер и позиция по умолчанию
- •Системные команды
- •Сообщения, связанные с размером и позицией окна
- •Уничтожение окна
- •Как создать главное окно
- •Работа с дочерними окнами
- •Как уничтожить окно
- •Лекция 24. Ловушки сообщений (Хуки)
- •Лекция 25. Трансляция с языков программирования Сущность трансляции. Компиляция и интерпретация
- •Фазы трансляции и выполнения программы
- •Препроцессор
- •Трансляция и ее фазы
- •Модульное программирование, компоновка
- •Структура транслятора
РД
– 378h
– чтение и запись (R/W)
РУ
– 379h
– только чтение (R/O)
РУ
– 37Ah
– только запись (W/O)37Bh – не используется
Имена портов |
IBM |
AT |
LPT 1 (PRN) |
3BCh |
378h |
LPT2 |
378h |
278h |
LPT3 |
278h |
3BCh |
При чтении из РД результат зависит от типа и конструкции адаптера:
1 вариант однонаправленного адаптера: будет читаться состояние регистра (то, что мы туда записали)
2 вариант однонаправленного адаптера: будет читаться как смесь состояний линий и состояния регистра
В двунаправленном адаптере (Bi–directional) – в режиме ввода будет читаться состояние линий.
Рис. 4.1. Алгоритм обмена без прерываний на примере Centronics
Лекция 5. Прерывания
5.1. Механизм прерываний
Для обработки событий, происходящих асинхронно по отношению к выполнению программы, лучше всего подходит механизм прерываний. Прерывание можно рассматривать как некоторое особое событие в системе, требующее моментальной реакции. Например, хорошо спроектированные системы повышенной надежности используют прерывание по аварии в питающей сети для выполнения процедур записи содержимого регистров и оперативной памяти на магнитный носитель с тем, чтобы после восстановления питания можно было продолжить работу с того же места.
Кажется очевидным, что возможны самые разнообразные прерывания по самым различным причинам. Поэтому прерывание рассматривается не просто как таковое: с ним связывают число, называемое номером типа прерывания или просто номером прерывания. С каждым номером прерывания связывается то или иное событие. Система умеет распознавать, какое прерывание, с каким номером оно произошло, и запускает соответствующую этому номеру процедуру.
Программы могут сами вызывать прерывания с заданным номером. Для этого они используют команду INT. Это так называемые программные прерывания. Программные прерывания не являются асинхронными, так как вызываются из программы (а она-то знает, когда она вызывает прерывание!).
Программные прерывания удобно использовать для организации доступа к отдельным, общим для всех программ модулям. Например, программные модули операционной системы доступны прикладным программам именно через прерывания, и нет необходимости при вызове этих модулей знать их текущий адрес в памяти. Прикладные программы могут сами устанавливать свои обработчики прерываний для их последующего использования другими программами. Для этого встраиваемые обработчики прерываний должны быть резидентными в памяти.
Аппаратные прерывания вызываются физическими устройствами и приходят асинхронно. Эти прерывания информируют систему о событиях, связанных с работой устройств, например о том, что наконец-то завершилась печать символа на принтере и неплохо было бы выдать следующий символ, или о том, что требуемый сектор диска уже прочитан, его содержимое доступно программе.
Использование прерываний при работе с медленными внешними устройствами позволяет совместить ввод/вывод с обработкой данных в центральном процессоре и в результате повышает общую производительность системы.
Некоторые прерывания (первые пять в порядке номеров) зарезервированы для использования самим центральным процессором на случай каких-либо особых событий вроде попытки деления на ноль, переполнения и т.п.
Иногда желательно сделать систему нечувствительной ко всем или отдельным прерываниям. Для этого используют так называемое маскирование прерываний. Но некоторые прерывания замаскировать нельзя, это немаскируемые прерывания.
Заметим еще, что обработчики прерываний могут сами вызывать программные прерывания, например, для получения доступа к сервису BIOS или ОС (сервис BIOS также доступен через механизм программных прерываний).
Составление собственных программ обработки прерываний и замена стандартных обработчиков является ответственной и сложной работой. Необходимо учитывать все тонкости работы аппаратуры и взаимодействия программного и аппаратного обеспечения. При отладке возможно разрушение операционной системы с непредсказуемыми последствиями, поэтому надо очень внимательно следить за тем, что делает ваша программа.