- •Определение определителя порядка n, его свойства.
- •Свойства определителя порядка п:
- •Сложение матриц и умножение матрицы на число, свойства этих операций.
- •Свойства операций сложения матриц и умножения на число:
- •Умножение матриц, свойства умножения (доказать ассоциативность).
- •Свойства умножения матриц:
- •Обратная матрица, существование и единственность.
- •Ранг матрицы. Теорема о базисном миноре.
- •Ранг матрицы. Вычисление ранга методом окаймляющих миноров.
- •Метод элементарных преобразований
- •Метод Гаусса решения систем линейных уравнений.
- •Правило Крамера.)
- •Теорема Кронекера-Капелли.
- •Система линейных однородных уравнений. Фундаментальная система решений.
- •Аксиоматическое определение линейного пространства. Примеры. Следствия из аксиом.
- •Базис линейного пространства. Примеры базисов в конкретных пространствах.
- •Базис линейного пространства. Единственность разложения вектора по базису.
- •Базис линейного пространства. Координаы суммы векторов и произведения вектора на число.
- •Размерность линейного пространства.
- •Связь между базисами линейного пространства.
- •Линейные подпространства. Примеры.
- •Линейные операторы, определения и примеры.
- •Матрица линейного оператора. Связь координат образа и прообраза.
- •Характеристический многочлен и характеристические корни матрицы.
- •Характеристические корни и собственные значения линейного оператора.
- •Линейные операторы с простым спектром.
- •Евклидовы пространства. Определения и примеры. Следствия из аксиом.
- •Норма вектора. Неравенство Коши-Буняковского.
- •Линейная независимость системы ненулевых ортогональных векторов в евклидовом прос-стве.
- •Процесс ортогонализации Шмидта.
- •Ортогональные и ортонормированные базисы в евклидовом пространстве.
- •Ортогональные матрицы, их свойства (доказать: q является ортогональной тогда и только тогда, когда столбцы q составляют ортонормированную систему).
- •Ортогональные матрицы, их свойства (доказать: матрица перехода от ортонормированного базиса к ортонормированному базиса является ортогональной).
- •Ортогональные операторы в евклидовом пространстве, их свойства.
- •Квадратичные формы. Линейные преобразования неизвестных.
- •Положительно определенные квадратичные формы. Критерий Сильвестра.
Положительно определенные квадратичные формы. Критерий Сильвестра.
Определение 5.
Нормальным
видом квадратичной формы называется
сумма квадратов неизвестных с
коэффициентами «+!» или «
».
Теорема 4. Всякую квадратичную форму можно привести некоторым невырожденным линейным преобразованием неизвестных к нормальному виду.
Определение 6.
Квадратичная
форма от n
неизвестных называется положительно
определенной, если она приводится к
нормальному виду, содержащему n
квадратов неизвестных с коэффициентами
«+1»:
Теорема
5.
Квадратичная
форма
является положительно определенной
тогда и только тогда, когда при любых
значениях неизвестных, хотя бы одно из
которых отлично от нуля, эта форма
принимает положительные значения.
Теорема 6 (критерий Сильвестра). Квадратичная форма является положительно определенной тогда и только тогда, когда все ее главные миноры строго положительны.
