Добавил:
github.com Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
59
Добавлен:
30.09.2023
Размер:
5.03 Mб
Скачать

Свойства умножения матриц:

  1. Умножение дистрибутивно:

, .

2. Умножение ассоциативно: .

Докажем свойство 1. Пусть , , , , , , , , .

Обозначим , , , , , , , .

Имеем

,

и, таким образом, в соответствии с определением 6 , или, возвращаясь к старым обозначениям, . Свойство 1 доказано.

Так как умножение матриц некоммутативно, следовало бы доказать и правую дистрибутивность: . Опустим доказательство, так как оно аналогично приведенному доказательству левой дистрибутивности.

Докажем свойство 2. Пусть , , , , , , , , .

Обозначим , , , , , , , , , , , .

Имеем

,

таким образом, .

Вернемся к старым обозначениям и получим: , т.е. свойство 2 доказано.

Для квадратных матриц справедливо следующее утверждение, которое приведем без доказательства.

Теорема 2. Для любых двух квадратных матриц и

.

Приведем пример, иллюстрирующий утверждение теоремы 2.

Пример 13. Даны матрицы

и .

Вычислить .

Воспользуемся теоремой 2: .

Найдем произведение непосредственно:

. Следовательно, результаты совпадают.

Билет 4. Умножение матриц, свойства умножения (доказать дистрибутивность).

Определение 8. Произведением матрицы , , , на матрицу , , , называется матрица , , , с элементами .

Краткая запись: .

Пример 10. Найти произведение матриц

и .

В соответствии с определением 8 найдем

.

Пример 11. Перемножить матрицы

и .

Имеем

.

Замечание 1. Число элементов в строке матрицы равно числу элементов в столбце матрицы (число столбцов матрицы равно числу строк матрицы ).

Замечание 2. В матрице строк столько же, сколько в матрице , а столбцов столько же, сколько в .

Замечание 3. Вообще говоря, (умножение матриц некоммутативно).

Чтобы обосновать замечание 3, достаточно привести хотя бы один пример.

Пример 12. Перемножим в обратном порядке матрицы и из примера 10.

,

таким образом, в общем случае .

Отметим, что в частном случае равенство возможно.

Матрицы и , для которых выполняется равенство , называются перестановочными, или коммутирующими.

Свойства умножения матриц:

  1. Умножение дистрибутивно:

, .

2. Умножение ассоциативно: .

Докажем свойство 1. Пусть , , , , , , , , .

Обозначим , , , , , , , .

Имеем

,

и, таким образом, в соответствии с определением 6 , или, возвращаясь к старым обозначениям, . Свойство 1 доказано.

Так как умножение матриц некоммутативно, следовало бы доказать и правую дистрибутивность: . Опустим доказательство, так как оно аналогично приведенному доказательству левой дистрибутивности.

Докажем свойство 2. Пусть , , , , , , , , .

Обозначим , , , , , , , , , , , .

Имеем

,

таким образом, .

Вернемся к старым обозначениям и получим: , т.е. свойство 2 доказано.

Для квадратных матриц справедливо следующее утверждение, которое приведем без доказательства.

Теорема 2. Для любых двух квадратных матриц и

.

Приведем пример, иллюстрирующий утверждение теоремы 2.

Пример 13. Даны матрицы

и .

Вычислить .

Воспользуемся теоремой 2: .

Найдем произведение непосредственно:

. Следовательно, результаты совпадают.

Соседние файлы в папке Экзамен