
- •Самостоятельная работа студентов во внеаудиторное время
- •Средства для самоподготовки студентов во внеаудиторное время
- •Теоретическая часть
- •1. Интерференция и дифракция света
- •2. Поляризация света
- •3. Геометрическая оптика
- •4. Тепловое излучение тел
- •Самостоятельная работа студентов во время практического занятия
- •Задачи с примерами решения
- •Задачи для самостоятельного решения
- •Ситуационные задачи
- •Примерные тестовые задания
1. Интерференция и дифракция света
Под интерференцией света понимают такое сложение световых волн, в результате которого образуется устойчивая картина их усиления и ослабления. Для получения интерференции света необходимо выполнение определенных условий.
Сложение волн, распространяющихся в среде, определяется сложением в разных точках пространства соответствующих колебаний. Наиболее простой случай сложения электромагнитных волн наблюдается тогда, когда их частоты одинаковы и направления электрических векторов совпадают.
В этом случае для амплитуды напряженности электрического поля:
,
(1)
где Δφ – разность фаз слагаемых волн (колебаний).
В зависимости от типа источников света результат сложения волн может быть принципиально различным.
Рассмотрим сложение волн, идущих от обычных источников света (лампа, пламя, Солнце и т. п.). Каждый такой источник представляет совокупность огромного количества излучающих атомов. Отдельный атом излучает электромагнитную волну приблизительно в течение 10-8 с, причем излучение есть событие случайное, поэтому и разность фаз Δφ принимает случайные значения. При этом среднее по излучениям всех атомов значение созΔφ равно нулю. Вместо (1) получаем усредненное равенство для тех точек пространства, где складываются две волны, идущие от двух обычных источников света:
(2).
Так как интенсивность волны пропорциональна квадрату амплитуды ,то из (2) имеем условие сложения интенсивностей I1 и I2 волн:
I = I1 + I2 (3)
Это означает, что для интенсивностей излучений, исходящих от двух (или более) обычных световых источников, выполняется достаточно простое правило сложения: интенсивность суммарного излучения равна сумме интенсивностей слагаемых волн. Это наблюдается в повседневной практике: освещенность от двух ламп равна сумме освещенностей, создаваемых каждой лампой в отдельности.
Если Δφ остается неизменной во времени, наблюдается интерференция света. Интенсивность результирующей волны принимает в разных точках пространства значения от минимального до некоторого максимального.
Интерференция света возникает от согласованных, когерентных источников, которые обеспечивают постоянную во времени разность фаз Δφ у слагаемых волн в различных точках. Волны, отвечающие этому условию, называют когерентными.
Интерференция могла бы быть осуществлена от двух синусоидальных волн одинаковой частоты, однако на практике создать такие световые волны невозможно, поэтому когерентные волны получают, «расщепляя» световую волну, идущую от источника.
Произведение геометрического пути волны на показатель преломления среды, т. е. хn, называют оптической длиной пути, а разность этих путей
δ = х1n1- х2n2 (4)
— оптической разностью хода волн.
Связь между разностью фаз и оптической разностью хода интерферирующих волн:
или
(5)
Используя законы сложения колебаний и соотношение (5), получаем условия максимума и минимума интенсивности света при интерференции — соответственно:
(max)
(6)
(min)
,
где k = 0, 1, 2, ….
Таким образом, максимум при интерференции наблюдается в тех точках, для которых оптическая разность хода равна целому числу волн (четному числу полуволн), минимум – в тех точках, для которых оптическая разность хода равна нечетному числу полуволн.
Интерференцию света используют в интерферометрах – приборах для измерения с высокой точностью длин волн, небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей.
На рис. 1 изображена принципиальная схема интерферометра Майкелъсона, который относится к группе двухлучевых. так как световая волна в нем раздваивается и обе ее части, пройдя разный путь, интерферируют.
Рис.1
Луч 1 монохроматического света от источника S падает под углом 45° на плоскопараллельную стеклянную пластинку А, задняя поверхность которой полупрозрачна, так как покрыта очень тонким слоем серебра. В точке О этот луч расщепляется на два луча 2 и 3, интенсивность которых приблизительно одинакова.
Луч 2 доходит до зеркала I, отражается, преломляется в пластине А и частично выходит из пластины — луч 2'. Луч 3 из точки О идет к зеркалу II, отражается, возвращается к пластине А, где частично отражается, — луч 3'. Лучи 2' и 3', попадающие в глаз наблюдателя , когерентны, их интерференция может быть зарегистрирована.
Обычно зеркала I и II располагают так, что лучи 2 и 3 от расхождения до встречи проходят пути одинаковой длины. Чтобы и оптическую длину путей сделать одинаковой, на пути луча 3 устанавливают прозрачную пластину В, аналогичную А, для компенсации двух путей, пройденных лучом 2 через пластину А. В этом случае наблюдается максимум интерференции.
Если одно из зеркал сдвинуть на расстояние λ/4, то разность хода лучей станет λ/2, что соответствует минимуму, произойдет смещение интерференционной картины на 0,5 полосы.
Если зеркало от первоначального положения переместить на расстояние
λ /2, то оптическая разность хода интерферирующих лучей изменится на λ , что соответствует максимуму, произойдет смещение интерференционной картины на целую полосу. Такая связь между перемещением зеркала и изменением интерференционной картины позволяет измерять длину волны по перемещению зеркала и, наоборот, перемещение по длине волны.
Интерферометр Майкельсона применяют для измерения показателя преломления. На пути лучей 2 и 3 устанавливают одинаковые кюветы К (показаны штриховыми линиями на рис. 1), одна из которых наполнена веществом с показателем преломления n1, а другая — с n2.
Интерференционный рефрактометр (интерферометр, приспособленный для измерения показателя преломления) способен фиксировать изменения показателя преломления в шестом знаке после запятой.
Интерференционный рефрактометр применяют, в частности, с санитарно-гигиеническими целями для определения содержания вредных газов.
С использованием интерферометра Майкельсон доказал независимость скорости света от движения Земли, что явилось одним из опытных фактов, способствовавших созданию специальной теории относительности.
Сочетание двухлучевого интерферометра и микроскопа, получившее название интерференционного микроскопа, используют в биологии для измерения показателя преломления, концентрации сухого вещества и толщины прозрачных микрообъектов (Рис.2).
Рис. 2
Луч света, как и в интерферометре, в точке А раздваивается, один луч проходит через прозрачный микрообъект М, а другой — вне его. В точке Д лучи соединяются и интерферируют, по результату интерференции судят об измеряемом параметре.
Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями. Возможность наблюдения дифракции зависит, в частности, от соотношения длины волны и разменов неоднородностей. Различают с некоторой степенью условности дифракцию сферических волн (дифракция Френеля) и дифракцию плоскопараллельных волн (дифракция Фраунгофера). Описание дифракционной картины возможно с учетом интерференции вторичных волн.
Объяснение и приближенный расчет дифракции света можно осуществить, используя принцип Гюйгенса—Френеля.
Согласно Гюйгенсу, каждая точка волновой поверхности, которой достигла в данный момент волна, является центром элементарных вторичных волн, их внешняя огибающая будет волновой поверхностью в последующий момент времени (рис. 3 ); S1 и S2 волновые поверхности соответственно в моменты t1 и t 2 .
Рис.3
Френель дополнил это положение Гюйгенса, введя представление о когерентности вторичных волн и их интерференции В таком обобщенном виде эти идеи получили название принципа Гюйгенса—Френеля.
Рассмотрим дифракцию на щели в параллельных лучах (рис. 4).
Рис. 4
На узкую длинную щель, расположенную в плоской непрозрачной преграде МN, нормально падает плоскопараллельный пучок монохроматического света. АВ = а — ширина щели; L— собирающая линза, в фокальной плоскости которой расположен экран Э для наблюдения дифракционной картины.
Если бы не было дифракции, то световые лучи, пройдя через щель, сфокусировались бы в точке О, лежащей на главной оптической оси линзы. Дифракция света на щели существенно изменяет явление.
Будем считать, что все лучи пучка света исходят от одного удаленного источника и, следовательно, когерентны. АВ есть часть волновой поверхности, каждая точка которой является центром вторичных волн, распространяющихся за щелью по всевозможном направлениям. Изобразить все эти вторичные волны невозможно, поэтому на рис. показаны только вторичные волны, распространяющиеся под углом α к направлению падающего пучка и нормали к решетке. Линза соберет эти волны в точке О' экрана, где и будет наблюдаться их интерференция. (Положение точки О' получают как пересечение с фокальной плоскостью побочной оси СО' линзы, проведенной под углом α )
Чтобы узнать результат интерференции вторичных волн, проделаем следующие построения. Проведем перпендикуляр АD к направлению пучка вторичных волн. Оптические пути всех вторичных волн от АD до О' будут одинаковыми, поскольку линза не вносит добавочной разности фаз между ними, поэтому та разность хода, которая образовалась у вторичных волн к
АD , будет сохранена и в точке О'.
Разобьем ВD на отрезки, равные λ/2. В случае, показанном на рис.4, получено три таких отрезка: | ВВ2| = |В2В1| = |В1D| = λ/2. Проведя из точек В2 и В1 прямые, параллельные АО, разделим АВ на равные зоны Френеля: | АА1| = |А1А2| = |А2В|. Любой вторичной волне, идущей от какой-либо точки одной зоны Френеля, можно найти в соседних зонах соответствующие вторичные волны такие, что разность хода между ними будет λ/2. Например, вторичная волна, идущая от точки А2 в выбранном направлении проходит до точки О' расстояние на λ/2 больше, чем волна, идущая от точки А1, и т. д. Следовательно, вторичные волны, идущие от двух соседних зон Френеля, погасят друг друга, так как отличаются по фазе на π.
Число зон, укладывающихся в щели, зависит от длины волны λ и угла α . Если щель АВ можно разбить при построении на нечетное число зон Френеля, а ВD — на нечетное число отрезков, равных λ/2, то в точке О' наблюдается максимум интенсивности света:
ВD = a sin α = ± (2k + 1)( λ/2); k = 1,2, ... . (7)
Направление, соответствующее углу α = 0, также отвечает максимуму, так как все вторичные волны придут в О в одинаковой фазе.
Если щель АВ можно разбить на четное число зон Френеля, наблюдается минимум интенсивности света:
a sin α = ± 2k (λ/2) = ± k λ ; k = 1, 2, ... . (8)
Таким образом, на экране Э получится система светлых (максимум) и темных (минимум) полос, центрам которых соответствуют условия (7) и (8), симметрично расположенных влево и вправо от центральной (α = 0), наиболее яркой, полосы. Интенсивность I остальных максимумов быстро убывает по мере удаления от центрального максимума (рис. 5).
Рис.5
Если щель освещать белым светом, то на экране Э образуется система цветных полос, лишь центральных максимум будет сохранять цвет падающего света, так как при α = 0 усиливается свет всех длин волн.
Дифракция света, как и интерференция, связана с перераспределением энергии электромагнитных волн в пространстве. В этом смысле щель в непрозрачном экране является не просто системой, ограничивающей поступление светового потока, но перераспределителем этого потока в пространстве.
Дифракционная решетка — оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга, щелей. Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места — щели — будут пропускать свет; штрихи, соответствующие промежутку между щелями, рассеивают и не пропускают света. Суммарную ширину щели а и промежутка b между щелями называют постоянной или периодом дифракционной решетки:
с = а+ b (9)
Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всевозможным направлениям, будут интерферировать, формируя дифракционную картину.
Пусть на решетку нормально падает плоскопараллельный пучок когерентных волн (рис. 6). Выберем некоторое направление вторичных волн под углом α относительно нормали к решетке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода δ = А'В'. Такая же разность хода будет для вторичных волн, идущих от соответственно расположенных пар точек соседних щелей. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы, для которых выполняется условие А'В' = ± k λ, или
c sin α = ± k λ (10)
где k=0,1,2, ... — порядок главных максимумов. Они расположены симметрично относительно центрального (k = 0, α = 0). Равенство (10) является основной формулой дифракционной решетки.
Рис.6
Голография – метод записи и восстановления изображения, основанный на интерференции и дифракции.
При фотографировании на фотопленке фиксируется интенсивность световых волн, отраженных предметом. Изображение в этом случае является совокупностью темных и светлых точек. Фазы рассеиваемых волн не регистрируются, и таким образом пропадает значительная часть информации о предмете.
Голография позволяет регистрировать и воспроизводить более полную информацию об объекте с учетом амплитуд и фаз волн, рассеянных предметом. Регистрация фазы возможна вследствие интерференции волн. С этой целью на светофиксирующую поверхность посылают две когерентные волны: опорную, идущую непосредственно от источника света или зеркал, которые используют как вспомогательные устройства, и сигнальную, которая появляется при рассеянии (отражении) части опорной волны предметом и содержит соответствующую информацию о нем.
Интерференционную картину, образованную сложением г.гнальной и опорной волн и зафиксированную на светочувствительной пластинке, называют голограммой. Для восстановления изображения голограмму освещают той же опорной волной.
На рис. 7 показана голограмма плоской волны. В этом случае на голограмме фиксируется плоская сигнальная волна I, попадающая под углом α1 на фотопластинку Ф .
Рис.7
Опорная волна II падает нормально, поэтому во всех точках фотопластинки одновременно ее фаза одинакова. Фазы сигнальной волны вследствие ее наклонного падения различны в разных точках светочувствительного слоя. Из этого следует, что разность фаз между лучами опорной и сигнальной волн зависит от места встречи этих лучей на фотопластинке и, согласно условиям максимумов и минимумов интерференции, полученная голограмма будет состоять из темных и светлых полос.
При восстановлении изображения можно изменить длину опорной волны. Так, например, голограмму, образованную невидимыми электромагнитными волнами (ультрафиолетовыми, инфракрасными и рентгеновскими), можно восстановить видим светом. Так как условия отражения и поглощения электромагнитных волн телами зависят, в частности, от длины волны, то эта особенность голографии позволяет использовать ее как метод внутривидения, или интроскопии (визуальное наблюдение объектов, явлений и процессов в оптически непрозрачных телах и средах, а также в условиях плохой видимости).
Особо интересные и важные перспективы открываются в связи с ультразвуковой голографией. Получив голограмму в ультразвуковых механических волнах, можно восстановить ее видимым светом. Ультразвуковая голография в перспективе может быть использована в медицине для рассматривания внутренних органов человека с диагностической целью. Учитывая большую информативность этого метода и существенно меньший вред ультразвука по сравнению с рентгеновским излучением, можно ожидать, что в будущем ультразвуковая голографическая интроскопия заменит традиционную рентгенодиагностику.
Еще одно медико-биологическое приложение голографии связано с голографическим микроскопом. Один из первых способов построения голографического микроскопа основан на том, что изображение предмета получается увеличенным, если голограмму, записанную с плоской опорной волной, осветить расходящейся сферической волной.
В развитие голографии внес вклад советский физик Ю. Н. Денисюк, разработавший метод цветной голографии.
Сейчас трудно оценить все возможности применения голографии: кино, телевидение, запоминающие устройства и т. д. Несомненно лишь, что голография является одним из величайших изобретений XX в.