Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
77
Добавлен:
14.02.2015
Размер:
109.82 Кб
Скачать

3. Определение относительных величин. Виды относительных величин.

Наряду с абсолютными статистическими величинами большое значение в статистике имеют относительные величины. В процессе выявления ряда важнейших для социально-экономической жизни вопросов возникает необходимость в изучении структуры явления, соотношения между отдельными его частями, развития во времени.

Относительная величина в статистике — это обобщающий показатель, который представляет собой частное от деления од­ного абсолютного показателя на другой и дает числовую меру соотношения между ними.

Основное условие правильного расчета относительной вели­чины — сопоставимость сравниваемых показателей и наличие реальных связей между изучаемыми явлениями. Величина, с которой производится сравнение (знаменатель дроби), обычно называется базой сравнения или основанием.

В зависимости, от выбора базы сравнения относительный показатель может быть представлен в различных долях единицы: десятых; сотых (т. е. процентах); тысячных (десятая часть про­цента называется промилле); десятитысячных (сотая часть про­цента называется продецимилле).

По своему содержанию относительные величины подразде­ляются на виды: относительные величины динамики, плано­вого задания, структуры, интенсивности, уровня экономиче­ского развития, координации и сравнения.

1). Относительная величина динамики - она характеризует изменение уровня какого-либо явления во времени и показывает во сколько раз увеличился (или уменьшился) уровень показателя по сравнению с предшествующем периодом.

Различают относительные показатели динамики с постоянной и переменной базой сравнения. Если сравнение осуществляется с одним и тем же базисным уровнем (например, с первым годом рассматриваемого периода), то получают относительные показатели динамики с постоянной базой (базисным).

Если сравнение осуществляется с предшествующим уровнем, то получают показатели динамики с переменной базой (цепным)

; , где- это уровень показателей в текущем (отчетном периоде),- это уровень показателей в предшествующем периоде,- это уровень показателей в базисном периоде.

Если данный показатель выраженный в кратком отношении, он называется коэффициентом роста при умножении на 100% получают темп роста.

2). Относительная величина выполнения плана отражает фактический уровень показателя в процентах или коэффициентах по сравнению с плановым уровнем. Она хар-ет степень выполнения плана., где-это фактический уровень показателя в отчетном периоде,-это планируемый уровень показателя на отчетный период.

3). Относительная величина планового задания характеризует напряженность планового задания. Она показывает на сколько планируется увеличить (или уменьшить) уровень показателя в текущем периоде по сравнению с фактически достигнутым уровнем предшествующего периода.

, где - это фактический уровень показателя в базисном периоде.

4). Относительными величинами структуры называются показате­ли, характеризующие долю отдельных частей изучаемой совокуп­ности во всем ее объеме. , где - это показатель характеризующий i часть совокупности, сумма - это показатель по всей совокупности в целом.

5) Относительная величина координации характеризует соотношение между частями одного целого. Она показывает во сколько раз одна часть совокупности больше другой или сколько единиц одной части приходится на 1, 10, 100…1000 и т. д. единиц другой части. , где- это уровень показателей хар-щий часть совокупности выбранную в качестве базы сравнения.

6). Относительная величина интенсивности называют пока­затель, характеризующий степень распространения или уровень развития того или иного явления в определенной среде. Они вычисляются путем сравнения разноименных величин, находя­щихся в определенной связи между собой. Эти показатели обычно определяются в расчете на 100, 1000 и т.д. единиц изу­чаемой совокупности (на 100 га земли, на 1000 человек населе­ния и т.д.) и являются именованными числами. , где - это показатель характер-ий явления А, - это показатель хар-ий среду распространения явления А.

7) Относительная величина сравнения характеризует сравнительные размеры одноименных абсолютных величин относящихся к одному и тому же периоду или моменту времени, но к различным объектам или территориям. , где- это показатель хар-ий объект А,- показатель хар-ий объект Б.

12 Вариация это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. Например, работники фирмы различаются по доходам, за­тратам времени на работу, росту, весу, любимому занятию в свободное время и т.д. Вариация возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному соче­таются в каждом отдельном случае. Таким образом, величина каждого варианта объективна. Средняя величина дает обобщающую характеристику при­знака изучаемой совокупности, но она не раскрывает строения совокупности, которое весьма существенно для ее познания. Средняя не показывает, как располагаются около нее варианты осредняемого признака, сосредоточены ли они вблизи средней или значительно отклоняются от нее. Средняя величина при­знака в двух совокупностях может бьпъ одинакрвои, но в одном случае все индивидуальные значения отличаются от нее мало, а в другом — эти отличия велики, т.е. в одном случае вариация признака мала, а в другом - велика, это имеет весьма важное значение для характеристики надежности средней величины. К показателям вариации относятся: размах вариации, сред­нее линейное отклонение, дисперсия и среднее квадратическое откло­нение, коэффициент вариации. Самым элементарным показателем вариации признака яв­ляется размах вариации R, представляющий собой разность между максимальным и минимальным значениями признака: R=Xmax-Xmin

Среднее линейное отклонение d представляет собой сред­нюю арифметическую абсолютных значений отклонений отдель­ных вариантов от их средней арифметической (при этом всегда предполагают, что среднюю вычитают из варианта: (х - x‾).

Среднее линейное отклонение: для несгруппированных данных d =| x-x‾| / n

где п — число членов ряда; для сгруппированных данных d=∑ | x-x‾| f / f

где ∑f - сумма частот вариационного ряда.

Дисперсия признака представляет собой средний квадрат отклонений вариантов от их средней величины, она вычисляет­ся по формулам простой и взвешенной дисперсий ( в зависимо­сти от исходных данных):1) простая дисперсия для несгруппированных данных σ2=∑(X-X‾)2 / n 2)взвешенная дисперсия для вариационного ряда σ2=∑(X-X‾)2 f / ∑f Cвойства дис­персии: 1)если все значения признака уменьшить или увеличить на одну и ту же постоянную величину А, то дисперсия от этого не изменится; 2)если все значения признака уменьшить или увеличить в одно и то же число раз (i раз), то дисперсия соответст­венно уменьшится или увеличится в i2 раз. Используя второе свойство дисперсии, разделив все вариан­ты на величину интервала, получим следующую формулу вы­числения дисперсии в вариационных рядах с равными интервалами по способу моментов:

где а — дисперсия, исчисленная по способу моментов; i— величина интервала; x1=x-A/ i новые (преобразованные) значения вариантов

(А — условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой);

момент второго порядка;

— квадрат момента первого порядка

Среднее квадратическое отклонение σ равно корню квад-| ратному из дисперсии:

для несгруппированных данных

для вариационного ряда

Среднее квадратическое отклонение — это обобщающая ха­рактеристика размеров вариации признака в совокупности; оно показывает, на сколько в среднем отклоняются конкретные ва- рианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, поэтому экономически хорошо интерпретируется.

Обозначим: 1 — наличие интересующего нас признака; 0 — его отсутствие; р — доля единиц, обладающих данным признаком; q доля единиц, не обладающих данным признаком; р + q =1. Исчис­лим среднее значение альтернативного признака и его дисперсию. Среднее значение альтернативного признака так как p + q = l.,то

Дисперсия альтернативного признака

Подст-в в формулу дисперсии q = 1 - р, получим

Среднее квад-ое отклонение альтерн-ого признака

Коэффициент вариации представляет собой выраженное в процентах отношение среднего квадратического отклонения к средней арифметической:: V= σ / X‾ *100

Общая дисперсия σ2 измеряет вариацию признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Она равна среднему квадрату отклонений отдель­ных значений признака х от общей средней х и может быть вычислена как простая дисперсия

Межгрупповая дисперсия δ 2 характеризует систематиче­скую вариацию результативного признака, обусловленную влия­нием признака-фактора, положенного в основание группиров­ки. Она равна среднему квадрату отклонений групповых (част­ных) средних X‾i от общей средней X‾ :

Внутригрупповая (частная) дисперсия σ2 i отражает случай­ную вариацию, т.е. часть вариации, обусловленную влиянием не­учтенных факторов и не зависящую от признака-фактора, поло­женного в основание группировки. Она равна среднему квадрату отклонений отдельных значений признака внутри группы х от средней арифметической этой группы х) (групповой средней) и может быть исчислена как простая дисперсия или как взвешенная дисперсия по формулам, соответственно:

На основании внутригрупповой дисперсии по каждой груп­пе, т.е. на основании σ2 i можно определить общую среднюю извнутригрупповых дисперсий :

Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсий:

Внутригрупповые дисперсии показывают вариации выработ­ки в каждой группе, вызванные всеми возможными фактора­ми (техническое состояние оборудования, обеспеченность ин­струментами и материалами, возраст рабочих, интенсивность труда и т.д.) , кроме различий в квалификационном разряд . Средняя из внутригрупповых дисперсий отражает вариацию выработки, обусловленную всеми факторами, кроме квалифика­ции рабочих, но в среднем по всей совокупности. Межгрупповая дисперсия характеризует вариацию групповых средних, обусловленную различиями групп рабочих по квали­фикационному разряду. Общая дисперсия отражает суммарное влияние всех возмож­ных факторов на общую вариацию среднечасовой выработки изделий всеми рабочими цеха.

Поэтому в статистическом анализе широко используется эм­пирический коэффициент детерминации ( ή 2 )показатель, пред­ставляющий собой долю межгрупповой дисперсии в общей дис­персии результативного признака и характеризующий силу влия­ния группировочного признака на образование общей вариации:

ή 22 / σ2 Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х (остальная часть общей вариации у обуславливается вариацией прочих факторов). При отсутствии связи эмпирический коэф равен 0, а при функциональной связи – единице. Эмпирическое корреляционное отношение — это корень квад­ратный из эмпирического коэффициента детерминации: v

ή=√ δ2 / σ2 оно показывает тесноту связи между группировочным и ре­зультативным признаками.

Эмпирическое корреляционное отношение ή , как и ή 2, может принимать значения от 0 до 1. Если связь отсутствует, то корреляционное отношение равно нулю, т.е. все групповые средние будут равны между собой, межгрупповой вариации не будет. Значит, группировочный при­знак никак не влияет на образование общей вариации. Если связь функциональная, то корреляционное отношение будет равно единице. В этом случае дисперсия групповых средних равна общей дисперсии , т.е. внутригрупповой вариации не будет. Это означает, что группировочный признак целиком оп­ределяет вариацию изучаемого результативного признака.

Чем значение корреляционного отношения ближе к еди­нице, тем теснее, ближе к функциональной зависимости связь между признаками.

Соседние файлы в папке статистика отв