
- •1 Цит. По: Нугаев р. М. Классика, модерн и постмодерн как этапы синтеза физической теории // Философские проблемы классической и неклассической физики. - м., 1998. С. 52-53.
- •1 Князева е. Н., Курдюмов с. П. Синергетика как новое мировидение: диалог с и. Пригожиным // Вопросы философии. 1992. № 12. С. 19.
- •1 Линде а. Д. Раздувающаяся Вселенная // Успехи физических наук. 1984. Т. 144. Вып. 2. С. 177-214.
- •1 Вернадский в. И. Размышления натуралиста. Научная мысль как планетарное явление. - м., 1977. С. 14.
- •1 Пригожин и., Стенгерс и, Порядок из хаоса: Новый диалог человека с природой. - м., 1986. С. 65.
6. Постнеклассическая наука
Постнеклассическая наука формируется в 70-х годах XX в. Этому способствуют революция в хранении и получении знаний (компьютеризация науки), невозможность решить ряд научных задач без комплексного использования знаний различных научных дисциплин, без учета места и роли человека в исследуемых системах. Так, в это время развиваются генные технологии, основанные на методах молекулярной биологии и генетики, которые направлены на конструирование новых, ранее в природе не существовавших генов. На их основе, уже на первых этапах исследования, были получены искусственным путем инсулин, интерферон и т. д. Основная цель генных технологий — видоизменение ДНК. Работа в этом направлении привела к разработке методов анализа генов и геномов, а также их синтеза, т. е. конструирование новых генетически модифицированных организмов. Разработан принципиально новый метод, приведший к бурному развитию микробиологии — клонирование (см. подробнее гл. III, §7).
Внесение эволюционных идей в область химических исследований привело к формированию нового научного направления — эволюционной химии. Так, на основе ее открытий, в частности разработки концепции саморазвития открытых каталитических систем, стало возможным объяснение самопроизвольного (без вмешательства человека) восхождения от низших химических систем к высшим.
Наметилось еще большее усиление математизации естествознания, что повлекло увеличение уровня его абстрактности и сложности. Так, например, развитие абстрактных методов в исследованиях физической реальности приводит к созданию, с одной стороны, высокоэффективных теорий, таких как электрослабая теория Салама—Вайнберга, квантовая хромодинамика, «теория Великого Объединения», суперсимметричные теории, а с другой — к так называемому «кризису» физики элементарных частиц. Так, американский физик М. Гутцвил-лер в 1994 г. писал: «Несмотря на все обещания, физика элементарных частиц превратилась в кошмар, несмотря на ряд глубоких интуитивных прозрений, которые мы эксплуатировали некоторое время. Неабелевы поля известны 40 лет, кварки наблюдались 25 лет назад, а гармоний открыт 20 лет назад. Но все чудесные идеи привели к моделям, которые зависят от 16 открытых параметров... Мы даже не можем установить прямые соответствия с массами элементарных частиц, поскольку необходимая для этого математика слишком сложна даже для современных компьютеров... Но даже когда я пытаюсь читать некоторые современные научные статьи или слушаю доклады некоторых своих коллег, меня не оставляет следующий вопрос: имеют ли они контакт с реальностью? Разрешите мне в качестве примера привести антиферромагнетизм, который снова популярен после открытия сверхпроводящих медных окислов. Сверхизощренные модели антиферромагнетизма были предложены и разработаны чрезвычайно тщательно людьми, которые ни разу не слышали, да и слышать не хотят, о гематите, или о том, что, как каждый знает, называется ржавым гвоздем»'.
Развитие вычислительной техники связано с созданием микропроцессоров, которые были положены также в основа ние создания станков с программным управлением, промышленных роботов, для создания автоматизированных рабочих мест, автоматических систем управления.
Прогресс в 80 — 90-х гг. XX в. развития вычислительной техники вызван созданием искусственных нейронных сетей, на основе которых разрабатываются и создаются нейрокомпьютеры, обладающие возможностью самообучения в ходе решения наиболее сложных задач. Большой шаг вперед сделан в области решения качественных задач. Так, на основе теории нечетких множеств создаются нечеткие компьютеры, способные решать подобного рода задачи. А внесение человеческого фактора в создание баз данных привело к появлению высокоэффективных экспертных систем, которые составили основу систем искусственного интеллекта.
Поскольку объектом исследования все чаще становятся системы, экспериментирование с которыми невозможно, то важнейшим инструментом
1 Цит. По: Нугаев р. М. Классика, модерн и постмодерн как этапы синтеза физической теории // Философские проблемы классической и неклассической физики. - м., 1998. С. 52-53.
научно-исследовательской деятельности выступает математическое моделирование. Его суть в том, что исходный объект изучения заменяется его математической моделью, экспериментирование с которой возможно при помощи программ, разработанных для ЭВМ. В математическом моделировании видятся большие эвристические возможности, так как «математика, точнее математическое моделирование нелинейных систем, начинает нащупывать извне тот класс объектов, для которых существуют мостики между мертвой и живой природой, между самодостраиванием нелинейно эволюционирующих структур и высшими проявлениями творческой интуиции человека»1.
На базе фундаментальных знаний быстро развиваются сформированные в недрах физики микроэлектроника и наноэлектроника. Электроника — наука о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств, используемых для передачи информации. И если в начале XX в. на ее основе было возможно создание электронных ламп, то с 50-х гг. развивается твердотельная электроника (прежде всего полупроводниковая), а с 60-х гг. — микроэлектроника на основе интегральных схем. Развитие последней идет в направлении уменьшения размеров, содержащихся в интегральной схеме элементов до миллиардной доли метра — нанометра (нм), с целью применения при создании космических аппаратов и компьютерной техники.
Все чаще объектами исследования становятся сложные, уникальные, исторически развивающиеся системы, которые характеризуются открытостью и саморазвитием. Среди них такие природные комплексы, в которые включен и сам человек — так называемые «человекоразмерные комплексы»; медико-биологические, экологические, биотехнологические объекты, системы «человек—машина», которые включают в себя информационные системы и системы искусственного интеллекта и т. д. С такими системами осложнено, а иногда и вообще невозможно экспериментирование. Изучение их немыслимо
1 Князева е. Н., Курдюмов с. П. Синергетика как новое мировидение: диалог с и. Пригожиным // Вопросы философии. 1992. № 12. С. 19.
без определения границ возможного вмешательства человека в объект, что связано с решением ряда этических проблем.
Поэтому не случайно на этапе постнеклассической науки преобладающей становится идея синтеза научных знаний — стремление построить общенаучную картину мира на основе принципа универсального эволюционизма, объединяющего в единое целое идеи системного и эволюционного подходов. Концепция универсального эволюционизма базируется на определенной совокупности знаний, полученных в рамках конкретных научных дисциплин (биологии, геологии и т. д.) и вместе с тем включает в свой состав ряд философско-мировоззренческих установок. Часто универсальный, или глобальный, эволюционизм понимают как принцип, обеспечивающий экстраполяцию эволюционных идей на все сферы действительности и рассмотрение неживой, живой и социальной материи как единого универсального эволюционного процесса.
Системный подход внес новое содержание в концепцию эволюционизма, создав возможность рассмотрения систем как самоорганизующихся, носящих открытый характер. Как отмечал академик Н. Н. Моисеев, все происходящее в мире можно представить как отбор и существуют два типа механизмов, регулирующих его:
-
адаптационные, под действием которых система не при обретает принципиально новых свойств;
-
бифуркационные, связанные с радикальной перестройкой системы
Моисеев предложил принцип экономии энтропии, дающий «преимущества» сложным системам перед простыми. Эволюция может быть представлена как переход от одного типа самоорганизующейся системы к другой, более сложной. Идея принципа универсального эволюционизма основана на трех важнейших концептуальных направлениях в науке конца ХХ в.:
-
теории нестационарной Вселенной;
-
синергетики;
-
теории биологической эволюции и развитой на ее осно- ве концепции биосферы и ноосферы.
Модель расширяющейся Вселенной, о которой подробно было рассказано выше, существенно изменила представления о мире, включив в научную картину мира идею космической эволюции. Теория расширяющейся Вселенной испытала трудности при попытке объяснить этапы космической эволюции от первовзрыва до мировой секунды после него. Ответы на эти вопросы даны в теории раздувающейся Вселенной, возникшей на стыке космологии и физики элементарных частиц.
В основу теории положена идея «инфляционной фазы» - стадии ускоренного расширения. После колоссального расширения в течение невероятно малого отрезка времени установилась фаза с нарушенной симметрией, что привело к изменению состояния вакуума и рождению огромного числа частиц. Несимметричность Вселенной выражается в преобладании вещества над антивеществом и обосновывается «великим объединением» теории элементарных частиц с моделью раздувающейся Вселенной. На этой основе удалось описать слабые, сильные и электромагнитные взаимодействия при высоких энергиях, а также достичь прогресса в теории сверхплотного вещества. Согласно последней, возникла возможность обнаружить факт, состоящий в том, что при изменении температуры в сверхплотном веществе происходит ряд фазовых переходов, во время которых меняются свойства вещества и свойства элементарных частиц, составляющих это вещество. Подобного рода фазовые переходы должны были происходить при охлаждении расширяющейся Вселенной вскоре после «Большого взрыва». Таким образом, устанавливается взаимосвязь между эволюцией Вселенной и процессом образования элементарных частиц, что дает возможность утверждать — Вселенная может представлять уникальную основу дл» проверки современных теорий элементарных частиц и их взаимодействий1.
Следствием теории раздувающейся Вселенной является положение о существовании множества эволюционно развивающихся вселенных, среди кото -