
философия 1-40 / Аспиранты вопросы 1-40 / 4
.doc
2. Наука классического периода
С первых двух глобальных революций в развитии научных знаний, происходивших в XVI-XVII вв., создавших принципиально новое по сравнению с античностью и средневековьем понимание мира, и началась классическая наука, ознаменовавшая генезис науки как таковой, как целостного триединства (см. гл. 1, § 3), т.е. особой системы знания, своеобразного духовного феномена и социального института.
Подготовительный этап первой научной революции приходится на эпоху Возрождения (1448-1540). В этот период происходит постепенная смена мировоззренческой ориентации: для человека значимым становится посюсторонний мир, а автономным, универсальным и самодостаточным - индивид. В протестантизме происходит разделение знания и веры, ограничение сферы применения человеческого разума миром "земных вещей", под которым понимается практически ориентированное познание природы.
Поэтому первоначальное "целое" науки в отличие от философии - это математическое естествознание, и прежде всего механика. "Предоставив дело спасения души "одной лишь вере", протестантизм тем самым вытолкнул разум на поприще мировой практической деятельности - ремесла, хозяйства, политики. Применение разума в практической сфере тем более поощрялось, что сама эта сфера, с точки зрения реформаторов, приобретает особо важное значение: труд выступает теперь как своего рода мирская аскеза, поскольку монашескую аскезу протестантизм не принимает. Отсюда уважение к любому труду - как крестьянскому, так и ремесленному, как деятельности землекопа, так и деятельности предпринимателя. Этим объясняется характерное для протестантов признание особой ценности технических и научных изобретений, всевозможных усовершенствований, которые способствуют облегчению труда и стимулированию материального производства».1 В этих условиях и возникает экспериментально-математическое естествознание, отделившееся от собственно философии как особой сферы знания ("великая дифференциация"
Среди тех, кто непосредственно подготавливал рождение" науки, был Николай Кузанский (1401-1464), идеи которого оказали влияние на Джордано Бруно, Леонардо да Винчи, Николя Коперника, Галилео Галилея, Иоганна Кеплера.
В своих философских воззрениях на мир Николай Кузанский вводит методологический принцип совпадения противоположностей - единого и бесконечного, максимума и минимума, из которого следует тезис об относительности любой точки отсчета, тех предпосылок, которые лежат в фундаменте арифметики, геометрии, астрономии и других знаний. Отсюда он делает заключение о предположительном характере всякого человеческого знания, а не только того, которое мы получаем, опираясь на опыт, как считали в античности. Поэтому он уравнивает в правах и науку, основанную на опыте, и науку, основанную на доказательствах.
Большое внимание Николай Кузанский придает измерительным процедурам, поэтому интерес представляет его попытка дать "опытное" обоснование геометрии с помощью взвешивания, которое воспринимается им как универсальный прием. Механические средства измерения уравниваются в правах с математическим доказательством, что уничтожает ранее непреодолимую грань между механикой, понимаемой как искусство, и математикой как наукой. Это те предпосылки, без которых не могло бы возникнуть исчисление бесконечно малых и механика как математическая наука.
Применяя принцип совпадения противоположностей к астрономии, Кузанский высказал предположение, что Земля не является центром Вселенной, а такое же небесное тело, как и Солнце и Луна, что подготавливало переворот в астрономии, который в дальнейшем совершил Коперник. А примененный к проблеме движения принцип совпадения противоположностей дал Н. Кузанскому возможность высказать идею о тождестве движения и покоя, что в корне противоречило античному и средневековому пониманию, утверждавшему, что покой и движение - качественно различные и принципиально несовместимые состояния.
Тот переворот, который совершил в астрономии польский астроном Николай Коперник (1473-1543), имел огромное значение для развития науки и философии и их отделения друг от друга. В год своей смерти он публикует труд "Об обращении небесных тел", в котором в качестве постулата утверждает, что все небесные тела являются сферами, вращающимися по круговым орбитам вокруг Солнца, восседающего на царском престоле и управляющего всеми светилами.
В этой гелиоцентрической концепции сформулировано новое миропонимание, согласно которому Земля - одна из планет, движущаяся по круговой орбите вокруг Солнца. Совершая обращение вокруг Солнца, она вращается и вокруг своей оси. Кажущиеся движения планет принадлежат не им, а Земле и через ее движение можно объяснить их неравномерности. Идея движения как естественного свойства небесных и земных тел - ценное достижение концепции Коперника. Кроме того, им высказана мысль о том, что движение тел подчинено некоторым общим закономерностям. Но он был убежден в конечности мироздания и считал, что Вселенная где-то заканчивается неподвижной твердой сферой, на которой закреплены неподвижные звезды.
Науку Нового времени характеризуют гелиоцентрическая система мира, предложенная Н. Коперником, открытие законов классической механики и научной картины мира, основанной на достижениях Г. Галилея и И. Ньютона, экспериментальное математическое естествознание, которое признано основанием новоевропейской науки.
Экспериментальный метод соединяется с математическим описанием природы. Историки науки подчеркивают, что именно в Западной Европе в Новое время происходит соединение эксперимента и математики. Возникновение науки Нового времени имело следующие теоретические предпосылки: мыслители-схоласты оставили в наследство новоевропейской науке развитый метод логического анализа, ремесленники подготовили почву для количественного подхода к явлениям, эпоха Ренессанса воспроизвела античные традиции абстрактно-дедуктивного мышления; важное значение имела публикация (в 1543 г.) трудов величайшего греческого математика и физика Архимеда. Становление новоевропейской науки свидетельствовало о всецелой рационализации мышления.
Происходило замещение упований на откровение и значимость божественного предопределения процедурами осознанного научного поиска. Ведущей для новоевропейской науки стала идея «закона природы», предполагающая не только научное открытие, но и его использование. Это было обусловлено духом новой эпохи — духом преобразований, предпринимательства и конкуренции. Утверждается идея прогресса, особую значимость приобретает получение нового знания, принцип упорядоченности и классификации, соединение теории и практики.
Представителем новоевропейской науки был польский астроном Николай Коперник (1473-1543). Он учился в Краковском университете, затем приехал в Италию для постижения основ астрономии, медицины, философии и права, где изучил древнегреческий язык и космогонические идеи древних авторов. Коперник рано пришел к убеждению о ложности теории Аристотеля—Птолемея, попытавшись в своем небольшом произведении «Очерк нового механизма мира» (1505—1507) математически конкретизировать свою идею. В своем главном труде «Об обращениях небесных сфер», который считался запрещенным и был издан только после его смерти, Коперник предложил гелиоцентрическую систему мира. С момента провозглашения того, что разработанная система позволяет «с достаточной верностью объяснить ход мировой машины, созданной лучшим и любящим порядок Зодчим», можно вести отсчет рождения детерминистического и механистического мировоззрения в противоположность телеологическому и организмическому. Земля оказалась не привилегированной, а «рядовой» планетой, и ее закономерности могли быть обнаружены на всем громадном ее протяжении.
А. Уайтхед в работе «Наука и современный мир» подчеркивал, что XVI в. увидел крушение западного христианства и рождение современной науки. Согласно этой позиции наука очень молода, ее возраст чуть более 400 лет. Развитие науки придало новую окраску человеческому сознанию и породило новизну способов мышления. Новое мышление явилось более важным событием, чем даже новая наука или техника. Оно изменило метафизические предпосылки и образное содержание нашего сознания, так что теперь старые стимулы вызывали новый отклик. О греческих изысканиях Уайтхед отзывался так: «Их чрезмерно интересовала математика. Они изобрели ее основоположения, анализировали ее предпосылки, открыли замечательные теоремы благодаря строгой приверженности дедуктивному рассуждению. Их умы увлекала страсть к обобщению. Они требовали ясных и смелых идей и строгих умозаключений из них. Это было совершенство, это был гений, это была идеальная подготовительная работа. Но это еще не было наукой в нашем понимании».
Согласно аристотелевской и схоластической традиции изложение науки основывалось на схеме, состоящей из двух элементов (диадической схеме): действительность и картина этого мира, создаваемая учеными. Истина означала согласие человеческого интеллекта с вещами действительного мира. Иногда индукция понималась как то, что позволяет на основе «материала наблюдений» строить структуру лингвистического материала.
Создание кратких изящных аналитических выражений — существенная часть успеха науки. Поэтому наука стала пониматься на основе триптической схемы: 1) наблюдаемый объект, 2) творящий ученый и 3) знаки, которыми ученый изображает картину мира.
В последствии логические позитивисты акцентировали внимание именно на отношении между физическими объектами и знаками или символами.
Результат этого соотношения был назван семантическим качеством науки. Отношения же между знаками составляют логический компонент.)
В XVII в. обозначилась новая роль естествоиспытателя, испытующего естество и уверенного, что божественная «Книга Природы» (метафора, унаследованная из теологии) написана языком математики». Итальянский мыслитель и ученый Галилео Галилей (1564—1642), увлеченно занимающийся механикой, физикой и астрономией, вошел в историю как создатель экспериментального метода. На протяжении всей своей жизни он пытался смягчить враждебность церкви по отношению к учению Коперника. Не окончив Пизанский университет и вернувшись во Флоренцию, Галилей под влиянием идей Архимеда изобрел прибор для гидравлического взвешивания и описал это изобретение в работе «Маленькие весы». С 1588 г. он занимает почетную должность профессора математики Пизанского университета. В трактате о движении он утверждает, что тела разного веса должны падать с одинаковой скоростью. Ему принадлежит открытие квадрическои зависимости пути падения от времени и установление параболической траектории брошенного горизонтально тела, использование телескопа с 30-кратным приближением в астрономических наблюдениях. Галилей поддерживает идеи Коперника, отмечая, что противоречащие этим идеям места Священного писания следует истолковывать аллегорически. Он получает разрешение папы написать книгу, в которой будут рассмотрены две системы мира — Птолемея и Коперника. Эта книга — «Диалог о двух системах мира, Птолемеевой и Коперниковой» — увидела свет лишь в 1632 г.; она была написана на итальянском языке, что давало возможность ее популяризации среди широкой аудитории, так как латынь как мертвый язык использовалась лишь в узких кругах. В 1633 г. суд инквизиции приговорил Галилея к пожизненному заключению, замененному на домашний арест.
Ученые приверженцы идей Галилея стремились к рациональному прочтению «Книги Природы». И хотя, как замечал Уайтхед, к 1500 г. Европа не обладала даже уровнем знаний Архимеда, умершего в 212 г. дон. э., все же в 1700 г. «Начала» Ньютона были уже написаны, и мир вступил в современную эпоху.
Главным достоянием Нового времени считается становление научного способа мышления, характеризующегося соединением эксперимента как метода изучения природы с математическим методом и формирование теоретического естествознания. И Галилей, и Декарт были уверены, что чувственные феномены сопровождаются математическими законами. Интерес к решающему эксперименту был «платой за застывшую рациональность средневековой мысли». Достаточно напомнить, что галилеевский принцип инерции получен с помощью идеального эксперимента.
Галилей формулирует парадоксальный образ — движение по бесконечно большой окружности при допущении, что она тождественна j бесконечной прямой, а затем осуществляет алгебраические исследования. И во всех интересных случаях фиксируется либо противоречие, либо несоответствие теоретических идеализации и обыденного опыта, теоретической конструкции и непосредственного наблюдения. Из высказываний Галилея понятно его отношение к идеализации: «Я допускаю, что выводы, сделанные абстрактным путем, оказываются в конкретных случаях далекими от действительности».
Однако «на практике инструменты и величины, с которыми мы имеем дело, столь ничтожны по сравнению с огромным расстоянием, отделяющим нас от центра земного шара, что мы смело можем принять шестидесятую часть градуса, соответствующую весьма большой окружности, за прямую линию, а два перпендикуляра, опущенные из ее концов, — за параллельные линии». Из этого следует, что суть научно-теоретического мышления начинает связываться с поиском видоизменения наблюдаемых условий, созданием некоего «идеального мира на бумаге», конструированием иной научной предметности, не встречающейся в готовом виде. Теоретическая идеализация, конструкт становятся постоянными членами в арсенале средств теоретического естествознания.
Галилео Галилея (1564-1642) - итальянского физика и астронома - по праву относят к тем, кто стоял у истоков формирования науки. Опираясь на принцип совпадения противоположностей, сформулированный Николаем Кузанским, он применил его к решению проблемы бесконечного и неделимого. Решая проблему пустоты, известную еще с античности, Галилей допустил существование "мельчайших пустот" в телах, которые оказываются источником силы сцепления в них.
С Галилея начинается рассмотрение проблемы движения, лежащей в основе классической науки. До него господствовало представление о движении, сформированное еще Аристотелем, согласно которому оно происходит, если существует сила, приводящая тело в движение; нет силы, действующей на тело, нет и движения тела. Кроме того, чтобы последнее продолжалось, необходимо сопротивление, другими словами, в пустоте движение невозможно, так как в ней нет ничего, что оказывало бы сопротивление.
Галилей предположил, что, если допустить существование абсолютно горизонтальной поверхности, убрать трение, то движение тела будет продолжаться. В этом предположении заключен закон инерции, сформулированный позже И. Ньютоном. Галилей был одним из первых мыслителей, кто показал, что непосредственное данные опыта не являются исходным материалом познания, что они всегда нуждаются в определенных теоретических предпосылках, другими словами, опыт "теоретически нагружен".
Галилей выделил два основных метода исследования природы:
1. Аналитический ("метод резолюций") - прогнозирование чувственного опыта с использованием средств математики, абстрагирования и идеализаций, благодаря чему выделяются элементы реальности, недоступные непосредственному восприятию (например, мгновенная скорость).
2. Синтетически-дедуктивный ("метод композиции") - математическая обработка данных опыта выявляет количественные соотношения, на основе которых вырабатываются теоретические схемы, применяемые для интерпретации и объяснения явлений.
Идеи закона инерции и примененный Галилеем метод заложили основы классической физики. К его научным достижениям относятся: установление того, что скорость свободного падения тела не зависит от его массы, а пройденный путь пропорционален квадрату времени падения; создание теории параболического движения, теории прочности и сопротивления материалов, создание телескопа, открытие закона колебания маятника, экспериментальное установление того, что воздух обладает весом. В области астрономических исследований Галилей обосновал гелиоцентрическую систему Коперника в работе "Диалог о двух системах мира - Птолемеевской и Коперниковой", дополнив ее своими открытиями, что Солнце вращается вокруг своей оси, что на его поверхности есть пятна, обнаружил у Юпитера 4 спутника (сейчас их известно 13), что Млечный путь состоит из звезд.
Достижения в области астрономии были высоко оценены крупнейшим немецким математиком и астрономом Иоганном Кеплером (1571 - 1630). Занимаясь поисками законов небесной механики на основе обобщения данных астрономических наблюдений, он установил три закона движения планет относительно Солнца. В первом законе, отказавшись от представления Коперника о круговом движении планет вокруг Солнца, он утверждал, что каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Из второго закона Кеплера следовало, что радиус-вектор, проведенный от Солнца к планете в равные промежутки времени, описывает равные площади. Это означало, что скорость движения планеты по орбите не постоянна, она тем больше, чем ближе планета к Солнцу. И согласно третьему закону, квадраты времен обращения планет вокруг Солнца относятся как кубы их средних расстояний от него. Кеплер разработал теорию солнечных и лунных затмений, предложив способы их предсказания, уточнил величину расстояния между Землей и Солнцем.
Естествоиспытатель сделал попытку не философского, а механического объяснения небесных движений, причиной которых считал взаимное притяжение тел, рассматривая их по аналогии с притяжением магнита, но природу сил тяготения для себя Кеплер еще не прояснил. Он не принимал закона инерции в той интерпретации, которую мы увидим у Декарта и Ньютона. Для него инерция тела состоит в его стремлении к покою, в сопротивлении движению - понимание, свойственное античности и средневековью. Вот поэтому Кеплер, также как и Аристотель, считал, что для приведения тела к движению необходим двигатель.
Непреходящая заслуга Френсиса Бэкона (1561-1626) - английского философа-материалиста и одного из основоположников науки - состояла в том, что он одним из первых заметил начавшийся в XVI-XVII вв. активный процесс "великой дифференциации". Иначе говоря, он уловил, что единое ранее знание (назвать ли его так, или философией, но это было единое духовное формообразование), - по современной терминологии "преднаука" - в силу экономических, политических и иных причин начинает объективно расчленяться, раздваиваться на два крупных (хотя и тесно связанных) "ствола" - собственно философию и науку, т.е. на два самостоятельных и специфических образования. Поэтому термины "философия" и "наука" у него далеко не синонимы.
Нисколько не умаляя роли философии, Ф. Бэкон предпринимает "Великое восстановление наук" (в книге, оставшейся не законченной) и фиксирует возникновение науки как "триединого целого" (система специализированного знания и его постоянного воспроизводства и обновления, социальный институт и форма духовного производства.
Своим творчеством Рене Декарт (1596-1650), французский философ и математик, призван был расчистить почву для постройки новой рациональной культуры и науки. Для этого нужен новый рационалистический Метод, прочным и незыблемым основанием которого должен быть человеческий разум.
В протяженной субстанции, или природе, как считает Декарт, мы можем мыслить ясно и отчетливо только ее величину (что тождественно с протяжением), фигуру, расположение частей, движение. Последнее понимается только как перемещение, ни количественные, ни качественные изменения к нему не относятся.
Наукой же, изучающей величину, фигуры, является геометрия, которая становится универсальным инструментом познания. И перед Декартом стоит задача - преобразовать геометрию так, чтобы с ее помощью можно было бы изучать и движение. Тогда она станет универсальной наукой, тождественной Методу. И создав систему координат, введя представление об одновременном изменении двух величин, из которых одна есть функция (кстати, термина "функция" еще в его терминологии нет) другой, Декарт внес в математику принцип движения. Теперь математика становится формально-рациональным методом, с помощью которого можно "считать" числа, звезды, звуки и т.д., любую реальность, устанавливая в ней меру и порядок с помощью нашего разума.
Французский мыслитель отождествляет пространство (протяженность) с материей (природой), понимая последнюю как непрерывную, делимую до бесконечности. Поэтому и космос у него беспределен. Но идею Дж. Бруно о множественности миров Декарт не разделяет.
Философ понимает движение как относительное, движение и покой равнозначны: тело может являться движущимся относительно одних тел, в то время как относительно других будет оставаться покоящимся. На этом основании он формулирует принцип инерции: тело, раз начав двигаться, продолжает это движение и никогда само собой не останавливается.
Гарантом и для закона инерции (первого закона природы) и для второго закона, утверждающего, что всякое тело стремится продолжать свое движение по прямой, согласно Декарту, выступает Бог-Творец. Третий закон определяет принцип движения сталкивающихся тел. Первый и второй законы признавались в физике Нового времени, третий же был подвергнут резкой критике.
Согласно Декарту, задача науки - вывести объяснение всех явлений природы из полученных начал, в которых нельзя усомниться, но устанавливаются эти начала философией. Поэтому его часто упрекают в априорном характере научных положений.
Декарт отмечает, что представление о мире, которое дает наука, отличается от реального природного мира, поэтому научные знания гипотетичны. Признание вероятностного их характера некоторые исследователи видят в нежелании Декарта навлечь на себя подозрение в подрыве религиозной веры. Но была и теоретическая причина, как считает П. П. Гайденко: "И причиной этой, как ни парадоксально, является божественное всемогущество. Какая же тут, казалось бы, может быть связь? А между тем простая: будучи всемогущим, Бог мог воспользоваться бесконечным множеством вариантов для создания мира таким, каким мы его теперь видим. А потому тот вариант, который предложен Декартом, является только вероятностным, - но в то же время он равноправен со всеми остальными вариантами, если только он пригоден для объяснения встречающихся в опыте явлений".2
Нигде в предшествующем знании не существовало понимания природы как сложной системы механизмов, всемогущий Творец никогда не выступал в образе Бога-Механика, поэтому Декарту важно показать, что Бог владеет бесконечным арсеналом средств для построения машины мира, и хотя человеку не дано постичь, какие именно из средств использовал Бог, строя мир, человек, создавая науку, конструирует мир так, чтобы между ним и реальным миром имелось сходство. Вот поэтому предлагаемый в науке вариант объяснения мира носит гипотетический характер, но отнюдь не теряет своей объяснительной силы.
Сильное впечатление на современников произвела теория вихрей (космогоническая гипотеза) Декарта: мировое пространство заполнено особым легким, подвижным веществом, способным образовывать гигантские вихри. Хотя космогоническая гипотеза Декарта была отвергнута, но остались бессмертными его достижения в области математики: введение системы координат, алгебраических обозначений, понятия переменной, создание аналитической геометрии. Важна была также идея развития, содержащаяся в теории вихрей, и идея деления "корпускул" до бесконечности, что впоследствии было подтверждено атомной физикой.
Научную программу, которую создал Исаак Ньютон (1643- 1727), английский физик, он назвал "экспериментальной философией". В соответствии с ней исследование природы должно опираться на опыт, который затем обобщается при помощи "метода принципов", смысл которого заключается в следующем: проведя наблюдения, эксперименты, с помощью индукции вычленить в чистом виде связи явлений внешнего мира, выявить фундаментальные закономерности, принципы, которые управляют изучаемыми процессами, осуществить их математическую обработку и на основе этого построить целостную теоретическую систему путем дедуктивного развертывания фундаментальных принципов.
Ньютон создал основы классической механики как целостной системы знаний о механическом движении тел, сформулировал три ее основных закона, дал математическую формулировку закона всемирного тяготения, обосновал теорию движению небесных тел, определил понятие силы, создал дифференциальное и интегральное исчисление как язык описания физической реальности, выдвинул предположение о сочетании корпускулярных и волновых представлений о природе света. Механика Ньютона стала классическим образцом дедуктивной научной теории.
Также как и Ньютон, немецкий ученый Готфрид Вильгельм Лейбниц (1646-1716) был убежден, что все в мире существующее должно быть объяснено с помощью исключительно механических начал. Природа - это совершенный механизм, и все - от неорганического до живых организмов - создано гениальным механиком Богом. И познаваться этот механизм может с помощью механических причин и законов.
Отметим основные научные достижения Лейбница (вопреки его механистическому материализму вначале, а затем объективному идеализму - особенно в "Монадологии"):
1. Открыл (одновременно с Ньютоном) дифференциальное и интегральное исчисления, что положило начало новой эре в математике.
2. Стал родоначальником математической логики и одним из создателей счетно-решающих устройств. В связи с этим основатель кибернетики Н. Винер назвал его своим предшественником и вдохновителем.
3. В вопросах физики и механики подчеркивал важную роль наблюдений и экспериментов, был одним из первых ученых, предвосхитивших закон сохранения и превращения энергии.
4. В трактате "Протагея" одним из первых пытался научно истолковать вопросы происхождения и эволюции Земли.
5. Изобрел специальные насосы для откачки подземных вод и создал другие оригинальные технические новшества.
6. Обратил внимание на теорию игр.
7. Указал на взаимосвязи, развитие и "тонкие опосредования" между растительным, животным и человеческим "царствами".
8. Ратовал за широкое применение научных знаний в практике.
В Новое время сложилась механическая картина мира, утверждающая: вся Вселенная - совокупность большого числа неизменных и неделимых частиц, перемещающихся в абсолютном пространстве и времени, связанных силами тяготения, подчиненных законам классической механики; природа выступает в роли простой машины, части которой жестко детерминированы; все процессы в ней сведены к механическим.