Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ekzamen

.pdf
Скачиваний:
15
Добавлен:
14.02.2015
Размер:
1.29 Mб
Скачать

Классификация формирований ГО:

1)по назначению – формирования общего назначения и служб ГО (специального назначения);

2)по подчиненности – формирования территориальные и объектовые;

3)по срокам (степени) готовности – формирования повышенной и обычной готовности.

Кформированиям служб ГО относятся посты радиационного и химического наблюдения, звенья связи, санитарные дружины и санитарные посты, противопожарные команды (отделения, звенья), аварийно-технические группы (звенья), отряды (команды, группы) радиационной и химической защиты, группы (звенья) по обслуживанию убежищ и укрытий, команды (группы, звенья) охраны общественного порядка, подразделений питания и др.

Формирования служб ГО создаются из специалистов соответствующего профиля и предназначаются для проведения в очагах поражения специальных работ и для усиления формирований общего назначения.

На объектах химической промышленности, особенно производящих или использующих ОХВ, служба радиационной и химической защиты является одной из важнейших служб системы гражданской обороны.

В состав данной службы входят следующие формирования:

1)группы (звенья) радиационной и химической разведки и посты радиационного и химического наблюдения;

2)сводные отряды (команды, группы) радиационной и химической защиты;

3)команды (группы) обеззараживания, создаваемые на базе предприятий коммунального хозяйства, цехов благоустройства предприятия, дорожно-эксплуатационных участков, треста (управления) озеленения и т.д.

Задача этих команд (групп) – защита персонала объекта и личного состава формирований от воздействия ОХВ, РВ, ОВ и БС методом обеззараживания (дегазации, дезактивации, дезинфекции) технологического оборудования, техники, транспорта, средств индивидуальной защиты, одежды, обуви и иного, а также санитарной обработки персонала организаций и личного состава формирований.

Территориальные и объектовые формирования ГО подразделяются на формирования общего назначения и специальные (службы ГО). Формирования общего назначения – сводные аварийноспасательные отряды, аварийно-спасательные команды (группы) и разведгруппы ГО общей разведки; специальные формирования – формирования служб ГО.

Сводные и аварийно-спасательные отряды (команды, группы) предназначены для розыска и выноса пораженных, находящихся под завалами в разрушенных и поврежденных зданиях и сооружениях, оказания первой медицинской помощи и доставки к местам погрузки, расчистки завалов, откопки и вскрытия заваленных и поврежденных защитных сооружений, локализации аварий на коммунальных и энергетических сетях и других работ.

Все специальные и большая часть территориальных формирований являются формированиями повышенной готовности с возможностью их развертывания за 6 ч с момента получения соответствующего сигнала о приведении их в полную готовность. Степень готовности территориальных формирований устанавливается соответствующим начальником ГО. Объектовые формирования комплектуются, как правило, по производственному принципу – по цехам, участкам, рабочим сменам и бригадам. В каждой рабочей смене создаются все типы формирований, предусмотренные для объекта в целом.

Для своевременной ликвидации последствий аварий (катастроф), стихийных бедствий, лесных пожаров часть объектовых формирований, как и специализированных (территориальных), содержится в повышенной готовности.

Формирования повышенной готовности укомплектовываются личным составом, техникой, транспортом, приборами РХР и комплектами СИЗ в первую очередь и с таким расчетом, чтобы их отрыв от работы не привел к нарушению производственного процесса.

Отделы ГО объектов совместно с командирами формирований разрабатывают планы приведения формирований в готовность (как приложение к плану ГО объекта).

Следует отметить, что на объектах химической промышленности вместо сводных отрядов (команд, групп) общего назначения создаются сводные отряды (команды, группы) радиационной и химической защиты, команды пожаротушения и санитарные дружины, а также другие формирования.

Примерная организация формирований ГО Спасательная команда (СК) – объектовое формирование общего назначения обычной готовности.

Она предназначена для проведения спасательных работ на объекте.

Всвоем составе СК имеет три спасательные группы по 25 человек в каждой и одну сандружину – 24 человека (6 звеньев по 4 человека). Всего в СК – 105 человек, 1 автомобиль, 1 мотоцикл. Имеются приборы РХР и ручной инструмент для резки металла. За 10 ч работы команда может извлечь из-под завалов и защитных сооружений до 1 тыс. человек и оказать пострадавшим первую помощь.

Взависимости от характера выполняемых задач команда усиливается формированиями служб. Аварийно-техническая команда (АТК) – объектовое формирование обычной или повышенной готовности. Она предназначена для ликвидации и локализации аварий и временного восстановления поврежденных участков коммунально-энергетических сетей (КЭС).

Всвоем составе АТК имеет три группы по 13 человек (электротехническую, водопроводноканализационных и газовых сетей). Всего в АТК 45 человек. В команду включены специалисты (электромонтеры, сантехники, газопроводчики) и средства механизации (бульдозер, экскаватор, автокран, компрессор и электростанция).

Обычно при проведении АСиДНР АТК и СК, работая вместе, усиливают друг друга, что ускоряет и облегчает проведение всего комплекса работ в очаге поражения.

Сводная команда (СВК) – основное формирование общего назначения повышенной готовности промышленного объекта.

Она предназначена для выполнения всего комплекса АСиДНР в очаге поражения на объекте и может привлекаться для ликвидации последствий стихийного бедствия и производственных аварий как на объекте, так и на других объектах района (города).

Всвоем составе СВК имеет: звено связи и разведки – 6 человек; две спасательные группы (СГ) по 25 человек в каждой; группу механизации (ГМ) – 26 человек (4 звена специалистов) и сандружину (СД)

– 24 человека (6 звеньев по 4 человека). Всего 108 человек.

Команда имеет бульдозер, автокран, компрессор, 2 электростанции, 2 сварочных аппарата, радиостанцию, приборы РХР, 6 грузовых автомобилей, из них 1 – в звене связи, 1 – в СД, 4 – в ГМ. Ориентировочные возможности СВК за 10 ч работы:

1)устройство проезда по завалу шириной 3–3,5 м – до 1 км;

2)откопка и вскрытие заваленных убежищ – 3–4 шт.;

3)извлечение пострадавших – до 500 человек и оказание им помощи;

4)отключение 5–10 участков разрушенных КЭС;

5)установка в 10 колодцах пробок (заглушек);

6)возведение защитных сооружений – до 10 шт.

При выполнении трудоемких работ СВК может быть усилена инженерной техникой сводной команды механизации работ.

65. единая государственная система предупреждения и ликвидации чрезвычайных ситуаций

Единая государственная система предупреждения и ликвидации чрезвычайных ситуаций решает вопросы по защите населения и территорий от чрезвычайных ситуаций природного, техногенного и иного характера с помощью комплекса мероприятий, обеспечивающий в мирое время защиту населения, территорий и окружающей среды, материальных и культурных ценностей государства. Объединяет в себя органы управления, силы и средства федеральных органов исполнительной власти, органов исполнительной власти субъектов Российской Федерации, органов местного самоуправления, организаций, в полномочия которых входит решение вопросов по защите населения и территорий от чрезвычайных ситуаций.

Основные задачи РСЧС:

Разработка правовых и экономических норм, связанных с защитой населения Подготовка населения к действиям при чрезвычайных ситуациях Прогнозирование чрезвычайных ситуаций Оценка и ликвидация социально-экономических последствий ЧС

Надзор и контроль в сфере защиты населения и террриторий от чрезвычайных ситуаций Международное сотрудничество в области защиты населения и территорий Ликвидация ЧС Организационная структура РСЧС

РСЧС строится по террриториально-производственному принципу, включает в себя территориальные и функциональные подсистемы.

Организационная структура РСЧС состоит из территориальных и функциональных подсистем и имеет пять уровней:

федеральный, охватывающий всю территорию РФ; региональный — территорию нескольких субъектов РФ; территориальный — территорию субъектов РФ; местный — территорию района (города, населенного пункта);

объектовый — территорию объекта производственного или социального назначения. Территориальные подсистемы РСЧС создаются в субъектах РФ для предупреждения и ликвидации чрезвычайных ситуаций в пределах их территорий и состоят из звеньев, соответствующих административно-территориальному делению этих территорий (районы, города и т.д.). Координирующим органом являются комиссии по чрезвычайным ситуациям органов исполнительной власти субъктов РФ.

В субъектах РФ создано 88 территориальных подсистем которые состоят из звеньев, соответствующих административно-территориальному делению этих территорий.

Функциональные подсистемы РСЧС создаются федеральными органами исполнительной власти для организации наблюдения и контроля за стихийными явлениями, состоянием окружающий среды и за потенциально опасными объектами.

Подсистемы РСЧС каждого уровня включают в себя: координирующие органы;

органы управления по делам гражданской обороны и чрезвычайных ситуаций (ГО и ЧС); органы повседневного управления; силы и средства;

резервы финансовых и материальных ресурсов; системы связи, оповещения и информационного обеспечения.

Федеральные подсистемы РСЧС создаются федеральными органами исполнительной власти в министерствах и организациях федерального подчинения. Действие органов по защите населения и террриторий от чрезвычайных ситуаций координирует МЧС России и органы непосредственно подчиненные федеральным органам исполнительной власти. (Координирующий орган: Межведомственная комиссия по предупреждению и ликвидации чрезвычайных ситуаций при правительстве России).

Региональный уровень включает районирование России по 6 регионам (Координирующий орган: региональные центры по делам ГОЧС).

Региональный состав РСЧС включает регионы: Центральный (Москва)

Северо-западный (Санкт-Петербург) Южный (Ростов-на-Дону) Приволжско-Уральский (Екатеринбург) Сибирский (Красноярск) Дальневосточный (Хараровск)

Общее руководство функционированием РСЧС осуществляется правительством РФ, непосредственное руководство осуществляет МЧС России.

В зависимости от обстановки, масштаба прогнозируемой или возникшей чрезвычайной ситуации предусмотрено три режима функционирования РСЧС:

режим повседневной деятельности режим повышенной готовности режим чрезвычайной ситуации.

Таким образом, Единая государственная система предупреждения и ликвидации чрезвычайных ситуаций является эффективным инструментом, непосредственно обеспечивающим безопасность страны, защиту населения и территорий от чрезвычайных ситуаций природного и техногенного характера.

Министерство чрезвычайных ситуация России является федеральным органом исполнительной власти, уполномоченным на решение задач в области гражданской обороны.

66. радиационные аварии, их виды. Нормы радиационной безопасности Радиационная авария, согласно определению НРБ-99, «потеря управления источником

ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или радиоактивному загрязнению окружающей среды».

Радиационные аварии подразделяются на:

локальные - нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующих излучений за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения; местные - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в

пределах санитарно-защитной зоны и в количествах, превышающих установленные нормы для данного предприятия; общие - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за

границу санитарно-защитной зоны и в количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

К типовым радиационно-опасным объектам следует отнести: атомные станции, предприятия по изготовлению ядерного топлива, по переработке отработанного топлива и захоронению радиоактивных отходов, научно-исследовательские и проектные организации, имеющие ядерные реакторы, ядерные энергетические установки на транспорте.

Классификация аварий на радиационно-опасных объектах проводится с целью заблаговременной разработки мер, реализация которых в случае аварии должна уменьшить вероятные последствия и содействовать успешной их ликвидации.

Возможные аварии на АЭС и других радиационно-опасных объектах классифицируют по двум признакам:

по типовым нарушениям нормальной эксплуатации; по характеру последствий для персонала, населения и окружения среды.

При анализе аварий используют цепочку "исходное событие-пути протекания-последствия". Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на проектные, проектные с наибольшими последствиями и запроектные. Под нормальной эксплуатацией АЭС понимается ее состояние в соответствии с принятой в проекте технологией производства энергии, включая работу на заданных уровнях мощности, процессы пуска и остановки, техническое обслуживание, ремонты, перегрузку ядерного топлива.

Причинами проектных аварий, как правило, являются исходные события, связанные с нарушением барьеров безопасности, предусмотренных проектом каждого реактора. Именно в расчете на эти исходные события и строится система безопасности АЭС.

Первый тип аварий - нарушение первого барьера безопасности, а проще - нарушение герметичности оболочек твэлов (тепловыделяющих элементов) из-за кризиса теплообмена или механических повреждений. Кризис теплообмена - это нарушение температурного режима (перегрев) твэлов. Второй тип аварий - нарушение первого и второго барьеров безопасности. При попадании радиоактивных продуктов в теплоноситель вследствие нарушения первого барьера дальнейшее их распространение останавливается вторым, который образует корпус реактора.

Третий тип аварий - нарушение всех барьеров безопасности. При нарушенных первом и втором барьерах теплоноситель с радиоактивными продуктами деления удерживается от выхода в окружающую среду третьим барьером - защитной оболочкой реактора. Под ним понимается совокупность всех конструкцией, систем и устройств, которые должны с высокой степенью надежности обеспечить локализацию выбросов.

НРБ-99 (Нормы радиационной безопасности-99) — действовавшие в России с 1999 до 2010 г. (под названием НРБ-2000 — действуют также в Белоруссии) санитарные нормы, регламентирующие допустимые уровни воздействия ионизирующего излучения и другие требования по ограничению облучения человека.

Относится к государственным санитарно-эпидемиологическим правилам и нормам. Приняты в 1999 году, введены в действие с 1 января 2000 года. Предыдущая редакция — НРБ-96.

Синонимы: СП 2.6.1.758-99 (иное название документа НРБ-99).

С 1 сентября 2010 года, вместо НРБ-99 в Российской Федерации введены в действие[1] санитарные правила СанПин 2.6.1.2523-09 (НРБ 99/2009). Где максимальные допустимые дозы радиации для населения от природных источников — 5 мЗв в год (~50 мкР/ч) и от техногенных источников — 1 мЗв в год (~10 мкР/ч). Медицинские источники радиации регламентируются отдельно.

67. виды ионизирующих излучений и их влияние на человека. Защита от ионизирующих излучений

Ионизирующее излучение – любое излучение, взаимодействие которого со средой приводит к образованию зарядов разных знаков. Свойствами ионизации среды обладают радиоактивные излучения, излучения высоких энергий, рентгеновские лучи.

Радиоактивные излучения образуются в результате самопроизвольного распада атомных ядер элементов. Известно около 50-ти естественных (уран, радий, торий и др.) и более 700 искусственно полученных радиоактивных элементов.

К ионизирующим излучениям относятся:

гамма-излучение – электромагнитное фотонное излучение, испускаемое при ядерных превращениях; характеристическое – фотонное излучение, испускаемое при изменении энергетического состояния атома; тормозное – фотонное излучение, испускаемое при изменении кинетической энергии заряжѐнных частиц;

рентгеновское – совокупность тормозного и характеристического излучений, диапазон энергии фотонов которых составляет от 1 тысячи до 1 миллиона эВ; корпускулярное – излучение, состоящее из частиц с массой покоя, отличной от нуля, альфа- и бета частиц, протонов, нейтронов и др.

Для характеристики действия ионизирующих излучений используются следующие показатели: экспозиционная доза – X, поглощѐнная доза – D, эквивалентная доза – Н.

Экспозиционная доза (X) – это полный заряд ионов одного знака, возникающих в воздухе при полном торможении всех вторичных электронов, которые были образованы фотонами в малом объѐме воздуха, делѐнный на массу воздуха в этом объѐме.

X = dQ/dm.

Единица экспозиционной дозы – кулон на килограмм, Кл/кг, внесистемная единица – рентген (Р). 1P = 2,58*10-4 Кл/кг или 1 Кл/кг = 3876 Р.

Единица измерения – кулон на килограмм в секунду (Кл/кг/с), или ампер на килограмм (А/кг), внесистемная единица - рентген в секунду (Р/с).

Поглощенная доза (D) – это средняя энергия, переданная излучением веществу в некотором элементарном объѐме, деленная на массу вещества в этом объѐме:

Д = dE/dm.

Единица поглощенной дозы – грей (Гр), равный одному джоулю на килограмм (Дж/кг). Внесистемная единица – 1 рад. 1 рад = 0,01 Гр.

Единица мощности поглощенной дозы – грей в секунду (Гр/с). Внесистемная единица – рад в секунду (рад/с).

Эквивалентная доза (Н) – величина, введѐнная для оценки опасности хронического облучения излучением произвольного состава и определяемая как произведение поглощѐнной дозы на средний коэффициент качества излучения (К):

Н = D*К.

Коэффициент качества излучения К – безразмерная ве-личина, учитывающая различие в величине радиационного воздействия разных видов излучений. Например, для гамма-квантов и бета-частиц этот коэффициент равен единице, а для альфа-частиц К = 20.

Единицей эквивалентной дозы является зиверт (Зв). 1 3в = 1 Гр*К.

Внесистемная единица эквивалентной дозы – бэр (биоло-гический эквивалент рентгена). 1 бэр = 1 рад*К.

В результате воздействия ионизирующего излучения в ткани поглощается энергия и возникает ионизация молекул, что ведѐт к разрыву молекулярных связей и изменению химической структуры биологических объектов. Особенностью ионизирующих излучений является кумулятивное действие на организм. Кумулятивное действие оказывается особенно сильным при попадании в организм радиоактивных веществ, отлагающихся в определѐнных тканях. Под влиянием облучения происходит перерождение нормальных клеток в злокачественные, возникают лейкемия, лучевая болезнь.

Основными нормативными документами, регламентирую-щими безопасность работы с источниками ионизирующих излучений, являются "Нормы радиационной безопасности (НРБ-2000)" и "Основные санитарные правила обеспечения радиационной безопасности (ОСП-2002)".

В соответствии с НРБ-2000 установлены три категории облучения: Категория А – профессиональное облучение лиц, работающих непосредственно с источниками ионизирующих излучений. Категория Б

облучение лиц, работающих в смежных помещениях, но не занятых непосредственно работой, связанной с радиационной опасностью. Категория В – облучение населения всех возрастных категорий.

При определении предельно допустимых доз (ПДД) внешнего и внутреннего облучения учитываются три группы критических органов:

1-я группа – всѐ тело, хрусталик глаза, кроветворные органы; 2-я группа – мышцы, жировая ткань, печень, почки, лѐг-кие и тд.; 3-я группа – кожа, кости.

Предельно допустимая доза облучения – это наибольшая эквивалентная доза, действие которой на организм в течение 50 лет не вызывает в нѐм необратимых изменений, обнаруживаемых современными методами исследования.

Предельно допустимые дозы устанавливаются для разных категорий облучения и групп критических органов.

Так, например, ПДД внешнего облучения всего организма для категории А – 5 бэр в год, категории Б

0,5 бэра в год, категории В – 0,05 бэра в год. Для категории А допускается однократная доза внешнего облучения 3 бэра, при условии, что годовая доза не превысит 5 бэр.

Исходя из существующих ПДД и групп критических органов, установлены предельно допустимые концентрации (ПДК) радиоактивных изотопов в воде открытых водоѐмов и источников водоснабжения, в воздухе рабочих помещений, санитарно-защитных зон, населѐнных пунктов. ПДК – предельно допустимое количество радиоактивного изотопа в единице объѐма или массы, поступление которого в организм естественными путями (с суточным потреблением воды, пищи, воздуха) не создаѐт в критических органах или в организме в целом доз облучения, превышающих допустимые.

К основным методам защиты относятся: использование источников с минимально возможным выходом ионизирующих излучений (защита количеством), ограничение времени работы с источниками (защита временем), удаление рабочего места от источника (защита расстоянием), экранирование источников.

Обеспечение радиационной безопасности требует комплекса многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, а также от типа источника.

Защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала. Этот принцип особенно часто применяется при непосредственной работе персонала с малыми радиоактивностями.

Защита расстоянием – достаточно простой и надежный способ защиты. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в конечном итоге приводит к снижению дозы облучения персонала.

Защита экранами – наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов применяют различные материалы, а их толщина определяется мощностью и излучением.

67. Виды ионизирующих излучений и их свойства

Наиболее разнообразны по видам ионизирующих излучений так называемые радиоактивные излучения, образующиеся в результате самопроизвольного радиоактивного распада атомных ядер элементов с изменением физических и химических свойств последних. Элементы, обладающие способностью радиоактивного распада, называются радиоактивными; они могут быть естественными, такие, как уран, радий, торий и др. (всего около 50 элементов), и искусственными, для которых радиоактивные свойства получены искусственным путем (более 700 элементов).

При радиоактивном распаде имеют место три основных вида ионизирующих излучений: альфа , бета и гамма.

Альфа-частица — это положительно заряженные ионы гелия, образующиеся при распаде ядер, как правило, тяжелых естественных элементов (радия, тория и др.). Эти лучи не проникают глубоко в твердые или жидкие среды, поэтому для защиты от внешнего воздействия достаточно защититься любым тонким слоем, даже листком бумаги.

Бета-излучение представляет собой поток электронов, образующихся при распаде ядер как естественных, так и искусственных радиоактивных элементов. Бета-излучения обладают большей проникающей способностью по сравнению с альфа-лучами, поэтому и для защиты от них требуются более плотные и толстые экраны. Разновидностью бета-излучений, образующихся при распаде некоторых искусственных радиоактивных элементов, являются. позитроны. Они отличаются от электронов лишь положительным зарядом, поэтому при воздействии на поток лучей магнитным полем они отклоняются в противоположную сторону.

Гамма-излучение, или кванты энергии (фотоны), представляют собой жесткие электромагнитные колебания, образующиеся при распаде ядер многих радиоактивных элементов. Эти лучи обладают гораздо большей проникающей способностью. Поэтому для экранирования от них необходимы специальные устройства из материалов, способных хорошо задерживать эги лучи (свинец, бетон, вода). Ионизирующий эффект действия гамма-излучения обусловлен в основном как непосредственным расходованием собственной энергии, так и ионизирующим действием электронов, выбиваемых из облучаемого вещества.

Рентгеновское излучение образуется при работе рентгеновских трубок, а также сложных электронных установок (бетатронов и т. п.). По характеру рентгеновские лучи во многом сходны с гамма-лучами и отличаются от них происхождением и иногда длиной волны: рентгеновские лучи, как правило, имеют большую длину волны и более низкие частоты, чем гамма-лучи. Ионизация вследствие воздействия рентгеновских лучей происходит в большей степени за счет выбиваемых ими электронов и лишь незначительно за счет непосредственной траты собственной энергии. Эти лучи (особенно жесткие) также обладают значительной проникающей способностью.

Нейтронное излучение представляет собой поток нейтральных, то есть незаряженных частиц нейтронов (n) являющихся составной частью всех ядер, за исключением атома водорода. Они не обладают зарядами, поэтому сами не оказывают ионизирующего действия, однако весьма значительный ионизирующий эффект происходят за счет взаимодействия нейтронов с ядрами облучаемых веществ. Облучаемые нейтронами вещества могут приобретать радиоактивные свойства, то есть получать так — называемую наведенную радиоактивность. Нейтронное излучение образуется при работе ускорителей элементарных частиц, ядерных реакторов и т. д. Нейтронное излучение обладает наибольшей проникающей способностью. Задерживаются нейтроны веществами, содержащими в своей молекуле водород (вода, парафин и др.).

Все виды ионизирующих излучений отличаются друг от друга различными зарядами, массой и энергией. Различия имеются и внутри каждого вида ионизирующих излучений, обусловливая

большую или меньшую проникающую и ионизирующую способность и другие их особенности. Интенсивность всех видов радиоактивного облучения, как и при других видах лучистой энергии, обратно пропорциональна квадрату расстояния от источника излучения, то есть при увеличении расстояния вдвое или втрое интенсивность облучения уменьшается соответственно в 4 и 9 раз.

Радиоактивные элементы могут присутствовать в виде твердых тел, жидкостей и газов, поэтому, помимо своего специфического свойства излучения, они обладают соответствующими свойствами этих трех состояний; они могут образовывать аэрозоли, пары, распространяться в воздушной среде, загрязнять окружающие поверхности, включая оборудование, спецодежду, кожный покров рабочих и т. д., проникать в пищеварительный тракт и органы дыхания.