
- •Методическое пособие
- •Введение
- •Понятие неопределенного интеграла, его свойства. Таблица интегралов. Непосредственное интегрирование
- •Метод введения новой переменной
- •Метод интегрирования по частям.
- •Интегрирование рациональных функций
- •Интегрирование тригонометрических функций
- •Интегрирование иррациональных функций
- •Определенный интеграл как предел интегральных сумм. Геометрический и экономический смысл
- •Свойства определенного интеграла
- •Интеграл с переменным верхним пределом интегрирования. Формула Ньютона-Лейбница
- •Формула Ньютона-Лейбница
- •Вычисление определенных интегралов
- •Несобственные интегралы Несобственные интегралы с бесконечными пределами интегрирования
- •Несобственные интегралы от неограниченных функций
- •Приложения определенного интеграла Геометрические приложения определенного интеграла Вычисление площадей плоских фигур
- •Вычисление длины дуги
- •Нахождение объёма тела по площадям поперечных сечений
- •Вычисление объемов тел вращения
- •Площадь поверхности вращения
- •Приложения определенного интеграла к решению некоторых задач механики и физики
- •Использование понятия определенного интеграла в экономике
- •Приближённое вычисление определённых интегралов
- •Квадратурные формулы левых и правых прямоугольников
- •Квадратурная формула центральных прямоугольников
- •Квадратурная формула трапеций
- •Оценки ошибок формул трапеций и центральных прямоугольников
- •Квадратурная формула Симпсона (формула парабол)
- •Квадратурные формулы более высокого порядка точности
- •Практическая оценка погрешности при применении квадратурных формул
- •Задания для самостоятельного решения
- •9. Найти
- •Набор заданий для выполнения расчетно-графической работы
- •Теоретические упражнения
- •Расчетные задания
- •Формулы. Справочный материал. Неопределенный интеграл
- •Определенный интеграл
- •Несобственные интегралы
- •Литература
Несобственные интегралы
Несобственные интегралы 1-го рода
Если
непрерывна при
, то несобственным интегралом по бесконечному промежутку называют
(2)
Если
непрерывна при
,
то
(3)
(4)
.
При
интеграл существует (сходится), при
интеграл расходится
(5) признак сходимости
и расходимости несобственных интегралов
1-го рода (признак сравнения): если
при
,
то из сходимости
следует сходимость
,
из расходимости
следует расходимость
Несобственные интегралы 2-го рода
(6)
Если
непрерывна при
,
,
то несобственным интегралом от разрывной
функции называют
(7)
Если
непрерывна при
,
,
то
(8)
Если
непрерывна при
,
кроме точки
то
(9)
При
интеграл существует (сходится), при
интеграл расходится
(10)
Признак сходимости и расходимости
несобственных интегралов 2-го рода
(признак сравнения): если
при
,
то из сходимости
следует сходимость
,
из расходимости
следует расходимость
Гамма-функция
(11)
сходится приx>0
(12)
при
(13)
Значения некоторых несобственных интегралов
(14)
(15)
(16)
(17)
(18)
(19)
(20)
Литература
Учебники
Письменный Д.Т. Конспект лекций по высшей математике; Полный курс. — М.: АЙРИС ПРЕСС, 2004. — 608 с.: ил. ISBN 5-8112-0508-2
Зайцев, И.А. Высшая математика. — М.: Изд. Дрофа, 2004, — 400 с. ISBN 5-7107-6957-6?5-7107-9071-0
Шипачев В.С. Высшая математика. – М.: Высшая школа, 2008. — 479 c. ISBN 978-5-06-006050-8
Берман А.Ф., Араманович И.Г. Краткий курс математического анализа для ВТУЗов. – М.: Изд. Лань, 2008. — 736 с. ISBN 978-5-8114-1499-5
Пискунов Н.С. Дифференциальное и интегральное исчисления. Т.1,2. — М.: НАУКА Главная редакция физико-математической литературы, 1978.
Пособия по решению задач
Данко П.Е. Высшая математика в упражнениях и задачах. В 2-х ч. Ч. I. Учебное пособие для вузов / П.Е. Данко, А.Г. Попов, Т.Е. Кожевников. – 6-е изд. — М.: Издательский дом «ОНИКС 21 век»: Мир и образование, 2003. – 304 с., ил. ISBN 5-329-00528-0
Данко П.Е. Высшая математика в упражнениях и задачах. В 2-х ч. Ч. II. Учебное пособие для вузов / П.Е. Данко, А.Г. Попов, Т.Е. Кожевников. – 6-е изд. — М.: Издательский дом «ОНИКС 21 век»: Мир и образование, 2003. – 416 с., ил. ISBN 5-329-00528-0
Задачники
Лунгу К.Н., Письменный Д.Т., Федин С.Н., Шевченко Ю.А. Сборник задач по высшей математике. 1 курс. — 3-е изд., испр. и доп. — М.: Айрис-пресс, 2004. — 576 с.: ил. — (Высшее образование). ISBN 5-8112-0552-X
Кузнецов Л.А. Сборник заданий по высшей математике. Типовые расчеты: Учебное пособие. 6-е изд., стер. / Л.А. Кузнецов. – СПб.: Издательство «Лань», 2005. – 240 с. — (Учебники для вузов. Специальная литература). ISBN 5-8114-0574-X
Демидович Б.П. Задачи и упражнения по математическому анализу. — М.: «Наука» Главная редакция физико-математической литературы, 1986.
Минорский В.П. Сборник задач по высшей математике. — М.: «Наука», Главная ред. физмат литературы. 1987
Справочники
Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов.– 13-е изд., исправленное./ И.Н. Бронштейн, К.А. Семендяев. – М.: Наука, Гл. ред. физ. – мат. лит., 1986.– 544 с.
Выгодский, М.Я. Справочник по высшей математике. — 14-е изд. / М.Я. Выгодский. — М.: «ДЖАНГАР», «БОЛЬШАЯ МЕДВЕДИЦА», 2001. 864 с. ISBN 57102-0197-9
При затруднении в ответах на эти вопросы рекомендуем обратиться к теоретической части курса.