
- •1. Сущность математического моделирования экономических процессов
- •1.1. Понятие математической модели экономического процесса
- •1.2. Классификация математических моделей
- •1.3. Примеры построения математических моделей экономических задач
- •2. Линейное программирование
- •2.1. Постановка задачи линейного программирования
- •2.2. Линейное программирование в экономике
- •2.3. Графический метод решения задачи линейного программирования
- •2.4. Основная задача линейного программирования
- •2.5.Симплекс-метод
- •2.6.Пример расчета экономико-математической модели
- •2.7. Двойственная задача линейного программирования. Экономическая интерпретация
- •2.8. Целочисленное линейное программирование. Метод Гомори
- •3. Транспортная задача как пример специальной задачи линейного программирования
- •3.1.Построение транспортной модели
- •3.2. Сбалансированные и несбалансированные транспортные модели
- •3.3. Определение начального плана транспортировок. Методы "северо-западного" угла, минимального элемента, Фогеля
- •3.4.Оптимальный план транспортной задачи. Метод потенциалов
- •3.5. Экономические задачи, сводящиеся к транспортным моделям
- •3.6. Венгерский метод решения задачи о назначениях
- •3.7. Применение задачи о назначениях к решению экономических проблем
- •4. Нелинейное программирование
- •4.1. Постановка задачи нелинейного программирования
- •4.2 Геометрическая интерпретация задачи нелинейного программирования. Графический метод решения
- •4.3. Метод множителей Лагранжа
- •4.4. Расчет экономико-математической модели при нелинейных затратах на производство
- •5. Динамическое программирование
- •5.1. Постановка задачи динамического программирования. Основные условия и область применения
- •5.2. Составление математической модели динамического программирования
- •5.3.Этапы решения задачи динамического программирования
- •5.4. Задача замены оборудования как задача динамического программирования
- •5.5. Оптимальное распределение инвестиций как задача динамического программирования
- •6. Модели систем массового обслуживания
- •6.1 Определение систем массового обслуживания
- •6.2 Классификация смо.
- •6.3. Параметры смо
- •6.4 Модели смо с отказами.
- •6.5 Модели смо с неограниченным временем ожидания
- •6.6 Модели замкнутых смо
- •7. Модели сетевого планирования и управления (спу)
1.2. Классификация математических моделей
Авторами предлагается классификация математических моделей, представленная на рис.1.3.
По числу критериев эффективности математические модели делятся на однокритериальные и многокритериальные. Многокритериальные математические модели содержат два и более критерия.
По учету неизвестных факторов математические модели делятся на детерминированные, стохастические и модели с элементами неопределенности.
В стохастических моделях неизвестные факторы – это случайные величины, для которых известны функции распределения и различные статистические характеристики (математическое ожидание, дисперсия, среднеквадратическое отклонение и т. п.). Среди стохастических можно выделить:
модели стохастического программирования, в которых либо в целевую функцию (1.2.1), либо в ограничения (1.2.2) входят случайные величины;
модели теории случайных процессов, предназначенные для изучения процессов, состояние которых в каждый момент времени является случайной величиной;
модели теории массового обслуживания, в которой изучаются многоканальные системы, занятые обслуживанием требований. Также к стохастическим моделям можно отнести модели теории полезности, поиска и принятия решений.
Для моделирования ситуаций, зависящих от факторов, для которых невозможно собрать статистические данные и значения которых не определены, используются модели с элементами неопределенности. В моделях теории игр задача представляется в виде игры, в которой участвуют несколько игроков, преследующих разные цели, например организацию предприятия в условиях конкуренции.
В имитационных моделях реальный процесс разворачивается в машинном времени, и прослеживаются результаты случайных воздействий на него, например организация производственного процесса.
Данное учебное пособие посвящено изучению, прежде всего детерминированных моделей, а также знакомит студентов с примерами стохастических моделей и моделей теории игр и статистических решений.
В детерминированных моделях неизвестные факторы не учитываются. Несмотря на кажущуюся простоту этих моделей, к ним сводятся многие практические задачи, в том числе большинство экономических задач. По виду це-
левой функции и ограничений детерминированные модели делятся на линейные, нелинейные, динамические и графические.
В линейных моделях целевая функция и ограничения линейны по управляющим переменным. Построение и расчет линейных моделей являются наиболее развитым разделом математического моделирования, поэтому часто к ним стараются свести и другие задачи либо на этапе постановки, либо в процессе решения.
Для линейных моделей любого вида и достаточно большой размерности известны стандартные методы решения, часть из которых будет освещена в данном пособии.
Нелинейные модели – это модели, в которых либо целевая функция, либо какое-нибудь из ограничений (либо все ограничения) нелинейны по управляющим переменным. Для нелинейных моделей нет единого метода расчета. В зависимости от вида нелинейности, свойств функции и ограничений можно предложить различные способы решения. Однако может случиться и так, что для поставленной нелинейной задачи вообще не существует метода расчета. В этом случае задачу следует упростить, либо сведя ее к известным линейным моделям, либо просто линеаризовав модель.
В динамических моделях в отличие от статических линейных и нелинейных моделей учитывается фактор времени. Критерий оптимальности в динамических моделях может быть самого общего вида (и даже вообще не быть функцией), однако для него должны выполняться определенные свойства. Расчет динамических моделей сложен, и для каждой конкретной задачи необходимо разрабатывать специальный алгоритм решения.
Графические модели используются тогда, когда задачу удобно представить в виде графической структуры.