
- •В. Н. Седалищев Физические основы получения измерительной информации с использованием генераторных и параметрических первичных преобразователей Учебное пособие
- •Введение
- •Глава 1
- •1. Информационно-энергетические основы теории измерений
- •1.1 Понятие информации. Разновидности информации
- •1.2 Количественная оценка информации
- •1.3 Связь понятий энергии и информации Информационный подход к анализу физических процессов
- •1.4 Применение энерго-информационного подхода к анализу физических процессов
- •Аномалии физических и химических свойств воды
- •1.5 Связь теории информации с теорией измерений
- •Количественная оценка измерительной информации
- •Естественные пределы измерений
- •1.6 Причины наличия ограничений количества информации, получаемой при измерениях
- •Разновидности шумов и причины их появления
- •1.7 Способы повышения информативности измерительного процесса
- •1.8 Общая характеристика этапов измерительного преобразования
- •Метрологические характеристики измерительных преобразователей
- •1.2 Классификация физических эффектов и областей их применения в измерительной технике
- •«Фундаментальное единство» природы. Метод электромеханических аналогий
- •Физические основы построения измерительных преобразователей генераторного типа
- •Физические основы создания электромеханических измерительных преобразователей генераторного типа
- •2.3 Пьезоэффект и его применение в измерительной технике
- •2.3.1 Теоретические основы построения пьезоэлектрических измерительных преобразователей генераторного типа
- •2.3.3 Ээсз пьезоэлектрического преобразователя генераторного типа
- •2.3.4 Физические основы работы пьезорезонансных измерительных преобразователей
- •2.3.2 Электрострикция и области применения ее в измерительной технике
- •2.4 Физические основы создания термоэлектрических измерительных преобразователей
- •2.4.1 Пироэффект и применение его в измерительных устройствах
- •2.4.2 Термоэлектрические эффекты в проводниках и полупроводниках
- •2.4.3 Особенности практической реализации термоэлектрических эффектов в измерительных устройствах
- •2.5 Гальваномагнитные эффекты и применение их в измерительных устройствах
- •2.5.1 Эффект Холла и применение его в измерительных устройствах
- •3. Физические эффекты, связанные с модуляцией активного сопротивления ээсз измерительного преобразователя
- •3.1 Принципы построения и разновидности резистивных измерительных преобразователей
- •3. 2 Физические основы создания пьезорезистивных преобразователей контактного сопротивления
- •3.3 Физические основы создания тензорезистивных проводниковых измерительных преобразователей
- •3.4 Физические основы полупроводниковых тензорезистивных преобразователей
- •3.6 Физические основы магниторезистивных измерительных преобразователей
- •3.7 Физические основы работы проводниковых терморезистивных измерительных преобразователей
- •3.8 Физические основы создания полупроводниковых терморезистивных измерительных преобразователей
- •3.9 Физические основы создания фоторезистивных измерительных преобразователей
- •3.10 Физические основы применения явления сверхпроводимости в измерительных устройствах
- •3.10.1 Свойства сверхпроводников
- •3.10.2 Квантово-механическая теория сверхпроводимости
- •Объяснение понятий экситона и поляритона
- •3.10.3 Применение явления сверхпроводимости в измерительной технике
- •3.10.4 Эффект Мейснера и его практическое применение
- •3.10.5 Стационарный и нестационарный эффекты Джозефсона и применение их в измерительной технике
- •4. Физические основы создания электрохимических измерительных преобразователей
- •4.1 Полярографический эффект в растворах и применение его в измерительных устройствах
- •4.2 Физические основы работы кондуктометрических измерительных преобразователей
- •4.3 Применение в измерительной технике электрокинетических явлений в растворах
- •4.4 Принципы работы гальванических измерительных преобразователей
- •5. Физические основы создания первичных преобразователей, основанных на модуляции магнитных параметров измерительной цепи
- •5.1 Принцип работы магнитоиндукционных измерительных преобразователей генераторного типа
- •5.2 Теоретические основы создания индуктивных измерительных преобразователей
- •5.3 Принцип работы вихретоковых измерительных устройств
- •5.4 Физические основы магнитомодуляционных измерительных преобразователей
- •Эффект Виганда
- •5.5 Физические эффекты, связанные с модуляцией магнитных характеристик материалов
- •Пример реализации магнитострикционного эффекта в датчиках линейных перемещений
- •Принцип работы устройства
- •Дополнительные эффекты, возникающие в магнитомодуляционных преобразователях
- •5.6 Физические основы создания магнитоупругих измерительных преобразователей
- •5.7 Зависимость магнитной проницаемости ферромагнетиков от влияющих факторов
- •6. Физические основы создания емкостных измерительных преобразователей
- •6.1 Модуляция геометрических размеров емкостных преобразователей
- •Принципы работы емкостных измерительных преобразователей
- •Емкостной преобразователь с переменной площадью обкладок
- •6.2 Физические основы емкостных измерительных устройств, основанных на модуляции диэлектрических свойств веществ
- •6.2.1 Строение материалов
- •6.2.2 Виды связей и механизмы поляризации диэлектриков
- •6.2.3 Влияние агрегатного состояния вещества на его диэлектрические свойства
- •6.2.4 Примеры практической реализация емкостных измерительных устройств, основанных на управлении диэлектрической проницаемостью веществ
- •7. Физические основы создания биодатчиков генераторного и параметрического типов
- •Глава 1. Информационно-энергетические основы теории измерений
- •Глава 2. Физические основы построения измерительных преобразователей генераторного типа
- •Глава 3. Физические эффекты, связанные с модуляцией активного сопротивления ээсз измерительного преобразователя
- •Глава 4. Физические основы создания электрохимических измерительных преобразователей
- •Глава 5. Физические основы создания первичных преобразователей, основанных на модуляции магнитных параметров измерительной цепи
- •Глава 6. Физические основы создания емкостных измерительных преобразователей
- •Глава 7. Физические основы создания биодатчиков генераторного и параметрического типов
- •Перечень физических эффектов
3.10.5 Стационарный и нестационарный эффекты Джозефсона и применение их в измерительной технике
В 1932г Мейснер и Хольм в результате исследования проводимости тонкого изолирующего слоя между двумя сверхпроводниками установили наличие туннельного эффекта (исчезает сопротивление тонкого изолирующего слоя).
В 1962г Брайан Джозефсон (по поручению Андерсена) теоретически исследовал явление туннелирования в сверхпроводниках, при этом получил основные формулы и предсказал ряд эффектов. При описании данных явлений используется понятие «электронной жидкости». Это квантовое понятие, амплитуда волны возмущения в такой жидкости зависит от плотности электронов. Наличие разности фаз волн приводит к их интерференции. Если фазы волн равны, то их амплитуды суммируются, а если фазы смещены, то суммарная амплитуда уменьшается.
При стационарном
эффекте
Джозефсона в цепи, состоящей из двух
сверхпроводников, разделенных тонким
окисным слоем (),
проходит малый постоянный ток без потери
напряжения на туннельном переходе.
Величина тока зависит от разности фаз
волн, образованных синхронизированными
электронными куперовскими парами, т.е.
от соотношения плотностей носителей
зарядов на границах перехода.
Уравнение для тока в цепи перехода при стационарном эффекте имеет вид;
.
(3.55)
Наложение основной и просочившейся волн определяет значение суммарной амплитуды плотности носителей зарядов в контактирующих сверхпроводниках. При этом разность потенциалов на туннельном переходе равна нулю.
При прямом нестационарном эффекте в результате приложения к туннельному переходу постоянного напряжения (больше определенного уровня) в переходе происходит генерация высокочастотных колебаний.
При обратном нестационарном эффекте под действием высокочастотного электромагнитного поля на переходе генерируется постоянная ЭДС, не зависящая от влияния внешних дестабилизирующих факторов.
Для тока в цепи перехода при нестационарном эффекте справедливо следующее уравнение:
.
(3.56)
Выполнив не сложные преобразования можно получить следующие математические соотношения:
(3.57)
,
,
(3.58)
,
(3.59)
где:
- квант энергии;
- целое число;
D – постоянная Джозефсона.
С увеличением частоты внешнего СВЧ излучения напряжение на туннельном переходе будет изменяться ступенчато.
Рис. 3.20 Зависимость напряжения на джозефсоновском переходе от частоты внешнего поля.
Величина генерируемого при этом постоянного напряжения может составлять всего несколько милливольт, но при последовательном соединении большого числа переходов уровень генерируемого напряжения может измеряться уже в вольтах. Устройства данного типа используются, например, для создания эталона ЭДС. Выходное напряжение такого эталона не зависит от внешних дестабилизирующих факторов и определяется уравнением:
,
(3.60)
где: N – число переходов, включенных последовательно.
Стационарный эффект Джозефсона положен в основу создания высокочувствительного сверхпроводящего квантового интерферометрического датчика, так называемого СКВИДа.
Рис. 3.21 Структурная схема первичного преобразователя СКВИД.
Под действием измеряемого магнитного поля происходит изменение суммарного тока через два параллельно включенных джозефсоновских перехода, реализующих стационарный эффект. Величина дополнительного сдвига фаз между токами в ветвях контура функционально зависит от измеряемого магнитного поля.
(3.61)
,
(3.62)
,
(3.63)
где:
- квант магнитного поля.
Устройства данного типа используются для регистрации сверхслабых магнитных полей (в десятки раз слабее магнитного поля Земли).
Уравнение ВАХ в упрощенном виде можно представить зависимостью вида:
.
(3.64)
Ток в измерительной цепи находится в пределах 10 мкА, а напряжение - в пределах 100мкВ (R – сопротивление контакта).
Применение высокотемпературных сверхпроводников в измерительных устройствах позволит кардинально повысить метрологические характеристики измерительных устройств и отказаться от необходимости производить периодическую поверку средств измерений.
Эффект Джозефсона нашел применение для создания переключающих и запоминающих устройств.
Рис. 3.22 Структурная схема переключающего устройства основанного на реализации эффекта Джозефсона.
При протекании в цепи тока создается магнитное поле, которое управляет процессом туннелирования зарядов через джозефсоновский переход. К достоинствам устройств, основанным на использовании эффекта Джозефсона можно отнести сверхвысокое быстродействие, низкий уровень рассеиваемой энергии, энергонезависимость хранения информации:
.
(3.65)
Контрольные вопросы к главе 3
Перечислите достоинства и недостатки резистивных измерительных преобразователей.
Приведите примеры практического применения пьезорезистивного эффекта.
Почему тензорезистивный эффект в проводниках выражен слабее, чем в полупроводниках?
Каким образом можно снизить влияние изменения температуры окружающей среды на рабочие характеристики тензорезистивных измерительных преобразователей?
Почему при повышении рабочей температуры снижается чувствительность тензорезистивных измерительных преобразователей?
Объясните физическую природу механизма тензочувствительности проводников и полупроводников.
В чем заключается отличие физической природы магниторезистивного эффекта в проводниках и полупроводниках?
Почему с повышением температуры снижается чувствительных магниторезистивных преобразователей?
Перечислите преимущества датчиков Холла по сравнению с магниторезистивными преобразователями.
Почему при изменении рабочей температуры изменяется чувствительность терморезистивных преобразователей?
Объясните природу экспоненциального характера зависимости сопротивления полупроводников от температуры.
В чем причина явления саморазогрева полупроводниковых преобразователей?
Почему повышение температуры и интенсивности светового потока приводит к снижению чувствительности фоторезистивных преобразователей?
Объясните механизм усиления сигнала в фоторезистивных преобразователях.
В чем природа искажения сигнала фоторезистивным преобразователем?
Объясните механизм образования куперовских электронных пар в сверхпроводниках.
Приведите возможные области применения сверх проводников в измерительной технике.
Объясните принцип работы криотрона.
Приведите примеры практической реализации эффектов Джозефсона и Мейснера в измерительной технике.