
- •Введение
- •1 Коллоидное состояние вещества
- •2 Поверхностный слой
- •3 Свободная поверхностная энергия. Поверхностное натяжение
- •4 Адгезия и когезия
- •5 Смачивание
- •6 Адсорбция
- •7 Адсорбция Гиббса
- •8 Поверхностно-активные вещества
- •9 Адсорбция поверхностно-активных веществ
- •10 Уравнение Шишковского. Правило Траубе
- •11 Поверхностная активность. Работа адсорбции
- •12 Адсорбция на твердых адсорбентах
- •12.1 Уравнение Ленгмюра
- •12.2 Уравнение Фрейндлиха
- •12.3 Полимолекулярная (потенциальная) теория адсорбции Поляни
- •12.4 Теория полимолекулярной адсорбции БЭТ
- •13 Адсорбционное понижение прочности. Эффект Ребиндера
- •Лабораторная работа №1. Адсорбция ПАВ на твердом абсорбенте
- •Вопросы
- •Задания
- •14 Получение коллоидных растворов. Лиофильные и лиофобные коллоидные растворы
- •15 Образование и строение заряженных коллоидных частиц
- •16 Очистка коллоидных систем
- •17 Теории строения двойного электрического слоя
- •18 Электрокинетические явления
- •19 Устойчивость дисперсных систем
- •20 Коагуляция лиофобных дисперсных систем
- •21 Защита коллоидных частиц и сенсибилизация
- •Лабораторная работа №2. Получение коллоидных систем конденсационными методами
- •Лабораторная работа №3. Очистка коллоидных систем
- •Лабораторная работа 6. Определение порога коагуляции
- •Лабораторная работа 7. Определение защитного числа желатины для золя Fе(ОН)3
- •Лабораторная работа 8. Взаимная коагуляция золей
- •Вопросы для самоподготовки и контроля.
- •Задания.
- •22 Общая характеристика высокомолекулярных соединений
- •23 Растворы полимерных электролитов. Изоэлектрическая точка
- •24 Белки – природные полиамфолиты
- •25 Влияние рН на структуру и свойства растворов белка
- •26 Оптические свойства коллоидных систем
- •26.1 Рассеяние света
- •26.2 Абсорбция света
- •27 Оптические методы исследования коллоидных систем
- •28 Фотоэлектроколориметр ФЭК-56
- •Порядок работы на приборе ФЭК-56
- •Лабораторная работа 9. Определение изоэлектрической точки казеина
- •Вопросы для самоподготовки и контроля.
- •Список использованной литературы

|
p Vм dp |
p |
RT |
dp |
RT ln |
ps |
(12.8) |
i |
|
p |
|||||
|
ps |
|
p |
|
|
||
|
ps |
|
|
|
где Vм – молярный объем газа; ps – равновесное давление в газовой фазе вне адсорбционного слоя; p – давление насыщенного пара в области поверхностного слоя.
Под адсорбционным потенциалом следует понимать работу, совершаемую против адсорбционных сил при перемещении 1 моля адсорбтива (пара) из данный точки поля в газовую фазу. Очевидно, максимальный адсорбционный потенциал должен существовать на границе адсорбент — адсорбционный объем. На границе адсорбционный объем — газовая фаза, то есть там, где кончается действие адсорбционных сил, потенциал должен быть равным нулю. Потенциал, отвечающий точке i, находящейся на поверхности раздела жидкость — газ в адсорбционном объеме, можно представить как работу сжатия 1 моль газа при температуре Т.
12.4Теория полимолекулярной адсорбции БЭТ
Делались попытки обобщить теории Ленгмюра и Поляни. Одной из наиболее удачных попыток является так называемая теория БЭТ (теория Брунауэра-Эммета-Теллера, 19351940 гг).
Основные положения теории БЭТ:
1.На поверхности адсорбента имеется определенное число активных центров.
2.Взаимодействием адсорбированных молекул в первом и последующих слоях пренебрегают.
3.Каждая молекула первого слоя может стать активным центром для адсорбции и образования последующих слоев.
4.Предполагается, что во втором и последующих слоях все молекулы имеют
такую же сумму статистических состояний, как и жидкости.
Таким образом, адсорбированная фаза может быть представлена как совокупность адсорбционных комплексов — молекулярных цепочек, начинающихся молекулами первого слоя, непосредственно связанных с поверхностью адсорбента. При этом цепочки не взаимодействуют друг с другом. Схема строения адсорбционного слоя по теории БЭТ показана на рисунке 7:
Рисунок 7 – Схема строения адсорбционного слоя по теории БЭТ
Теория Поляни не позволяет вывести уравнение изотермы адсорбции. Теория БЭТ, как и теория Ленгмюра, дает аналитическое уравнение для изотермы, которая в этом случае имеет S-образную форму.
Брунауэр, Эммет и Теллер при выводе уравнения рассматривают адсорбцию молекул пара как серию квазихимических реакций образования единичных и кратных адсорбционных комплексов:
пар + свободная поверхность ↔ единичные комплексы пар + единичные комплексы ↔ двойные комплексы пар + двойные комплексы ↔ тройные комплексы и т. д.
При этом теплота адсорбции первого слоя молекул, то есть теплота образования единичных комплексов, гораздо больше, чем для всех последующих слоев. Теплоты адсорбции всех последующих слоев приблизительно одинаковы и равны теплоте объемной конденсации. На основе этих представлений Брунауэр, Эммет и Теллер вывели следующее уравнение изотермы адсорбции паров:
21