
- •5.Прочность,ее параметры и еденици измерения
- •8.Атомно-кристаллическая структура металлов. Дефекты кристаллического строения металлов.
- •9. Строение металлического слитка.
- •10. Явление полиморфизма, полиморфные превращения в металлах и сплавах.
- •11. Упругая и пластическая деформация металлов и сплавов. Двойникование, скольжение, текстура деформации. Наклёп поликристаллического металла.
- •12. Влияние нагрева на структуру и свойства деформированного металла. Возврат и полигонизация.
- •13. Рекристаллизация, её виды, вызываемые изменения структуры и свойств.
- •14. Фазы в металлических сплавах (определение, типы фаз).
- •15. Фаза Твёрдые растворы, их виды, принципы формирования.
- •16. Фаза Химические соединения, их виды, принципы формирования.
- •18. Железо и сплавы на его основе, фазы и структура сплава железо-углерод.
- •19. Влияние углерода и постоянных примесей на свойства сталей.
- •20. Влияние легирования на свойства стали. Основные легирующие элементы, применяемые для легирования сталей.
- •21. Общая характеристика превращения переохлаждённого аутсенита (диаграмма изотермического превращения аустенита).
- •22. Перлитное превращение, виды перлитов, условия его протекания, механизм превращения.
- •23. Мартенситное превращение в стали, условия его протекания, механизм превращения. Свойства мартенсита.
- •27. Отжиг 1 рода, виды отжига, цели, преследуемые при его проведении, вызываемые изменение свойств и структуры.
- •28. Отжиг 2 рода виды отжига, цели, преследуемые при его проведении, вызываемые изменение свойств и структуры.
- •29. Закалка стали, необходимые условия, последовательность операций, изменение структуры и свойств.
- •30. Отпуск стали. Виды отпуска. Изменение механических свойств, происходящие при различных видах отпуска.
- •31.Виды Термомеханической обработки и их влияние на свойства стали.
- •32. Поверхностная закалка стали, способы осуществления, изменение механических свойств, достигаемые при её проведении.
- •33. Химико-термическая обработка стали, её виды и цели, преследуемые при её проведении.
- •34. Цементация стали, основные этапы технологии, получаемые механические свойства.
- •35. Азотирование стали, основные этапы технологии, получаемые механические свойства.
- •36. Чугун, виды чугунов, их свойства, маркировка, область применения.
- •37. Процесс графитизации, условия его протекания. Влияние графита на свойства чугунов.
- •38. Серый и белый чугуны, их марки, свойства, область применения.
- •39.. Высокопрочный чугун с шаровидным графитом, способ получения, основные свойства, область применения.
- •40. Ковкий чугун, способ получения, основные свойства, область применения.
- •41. Углеродистые конструкционные стали, их виды, маркировка.
- •42. Конструкционные углеродистые стали обычного качества, их виды, область применения, маркировка.
- •43. Легирующие элементы в конструкционных сталях, система маркировки.
- •44. Качественные конструкционные углеродистые стали качества, их виды, область применения, маркировка.
- •45. Конструкционные машиностроительные цементуемые легированные стали.
- •46. Износостойкая аустенитная сталь, её свойства, область применения.
- •47. Коррозионностойкие (нержавеющие) стали и сплавы, легирующие элементы, вводимые в сталь для повышения её коррозионной стойкости, маркировка.
- •49. Инструментальные стали, их виды, свойства, область применения, маркировка.
- •50. Шарикоподшипниковые стали.
- •51. Рессорно-пружинные стали.
- •52. Тугоплавкие металлы и сплавы.
- •53. Титан и сплавы на его основе, их основные свойства, область применения, маркировка.
- •54. Алюминий и сплавы на его основе, их основные свойства, область применения, маркировка.
- •55. Медь и сплавы на её основе, их основные свойства, область применения, маркировка.
- •56. Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой, цинковой и алюминиевой основах, требования, предъявляемые к ним, маркировка.
- •57. Износостойкие (аустенитные) стали.
56. Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой, цинковой и алюминиевой основах, требования, предъявляемые к ним, маркировка.
Эти сплавы применяют для заливки вкладышей подшипников скольжения. Они должны иметь достаточную твердость, но не очень высокую, сравнительно легко деформироваться под влиянием местных напряжений, иметь малый коэффициент трения между валом и подшипником.
Кроме того, температура плавления этих сплавов не должна быть высокой, и сплавы должны обладать хорошей теплопроводностью и устойчивостью к коррозии.
Оловянные и свинцовые баббиты (антифрикционные материалы на основе олова или свинца). Оловянные баббиты используют в подшипниках турбин крупных судовых дизелей, турбонасосов, турбокомпрессоров, электрических и других тяжелонагруженных машин. Свинцовые баббиты применяют для менее нагруженных подшипников.
По химическому составу баббиты классифицируют на три группы: оловянные (Б83, Б88), оловянно-свинцовые (БС6, Б16) и свинцовые (БК2, БКА). Последние не имеют в своем составе олова.
Свинцовые баббиты применяют в подшипниках, работающих в легких условиях. В марках баббитов цифра показывает содержание олова. Например, баббит БС6 содержит по 6% олова и сурьмы, остальное — свинец.
Для оловянных и оловянно-фосфористых бронз характерны высокие антифрикционные свойства: низкий коэффициент трения, небольшой износ, высокая теплопроводность, что позволяет подшипникам, изготовленным из этих материалов, работать при высоких окружных скоростях и нагрузках.
Цинковые и антифрикционные сплавы. Чаще применяют сплавы ЦАМ 10-5 и ЦАМ 9.5-1.5, содержащие кроме алюминия и меди 0.03-0.06% Mg. В литом виде сплавы применяют для монометаллических вкладышей, втулок и т.д.; сплав ЦАМ 10-5 применяется и для отливки биметаллических изделий со стальным корпусом.
Алюминиевые антифрикционные (подшипниковые) сплавы. Чем больше в сплавы олова, тем выше его антифрикционные свойства. Алюминиевые сплавы обладают хорошими антифрикционными свойствами, высокой теплопроводностью, хорошей коррозионной стойкостью в масляных средах и достаточно хорошими механическими и технологическими свойствами. Их применяют в виде тонкого слоя, нанесенного на стальное основание, т. е. в виде биметаллического материала. В зависимости от химического состава различают две группы сплавов.
Сплавы алюминия с сурьмой, медью и другими элементами, которые образуют твердые фазы в мягкой алюминиевой основе. Наибольшее распространение получил сплав АСМ, содержащий сурьму (до 6,5%) и магний (0,3—0,7%). Этот сплав хорошо работает при высоких нагрузках и больших скоростях в условиях жидкостного трения. Сплав АСМ широко применяют для изготовления вкладышей подшипников коленчатого вала двигателей тракторов и автомобилей.
Сплавы алюминия с оловом и медью, например АО20-1 (20% олова и до 1,2% меди) и А09-2 (9% олова и 2% меди). Они хорошо работают в условиях сухого и полужидкого трения и по антифрикционным свойствам близки к баббитам. Их используют для производства подшипников в автомобилестроении, транспортном и общем машиностроении.