- •5.Прочность,ее параметры и еденици измерения
- •8.Атомно-кристаллическая структура металлов. Дефекты кристаллического строения металлов.
- •9. Строение металлического слитка.
- •10. Явление полиморфизма, полиморфные превращения в металлах и сплавах.
- •11. Упругая и пластическая деформация металлов и сплавов. Двойникование, скольжение, текстура деформации. Наклёп поликристаллического металла.
- •12. Влияние нагрева на структуру и свойства деформированного металла. Возврат и полигонизация.
- •13. Рекристаллизация, её виды, вызываемые изменения структуры и свойств.
- •14. Фазы в металлических сплавах (определение, типы фаз).
- •15. Фаза Твёрдые растворы, их виды, принципы формирования.
- •16. Фаза Химические соединения, их виды, принципы формирования.
- •18. Железо и сплавы на его основе, фазы и структура сплава железо-углерод.
- •19. Влияние углерода и постоянных примесей на свойства сталей.
- •20. Влияние легирования на свойства стали. Основные легирующие элементы, применяемые для легирования сталей.
- •21. Общая характеристика превращения переохлаждённого аутсенита (диаграмма изотермического превращения аустенита).
- •22. Перлитное превращение, виды перлитов, условия его протекания, механизм превращения.
- •23. Мартенситное превращение в стали, условия его протекания, механизм превращения. Свойства мартенсита.
- •27. Отжиг 1 рода, виды отжига, цели, преследуемые при его проведении, вызываемые изменение свойств и структуры.
- •28. Отжиг 2 рода виды отжига, цели, преследуемые при его проведении, вызываемые изменение свойств и структуры.
- •29. Закалка стали, необходимые условия, последовательность операций, изменение структуры и свойств.
- •30. Отпуск стали. Виды отпуска. Изменение механических свойств, происходящие при различных видах отпуска.
- •31.Виды Термомеханической обработки и их влияние на свойства стали.
- •32. Поверхностная закалка стали, способы осуществления, изменение механических свойств, достигаемые при её проведении.
- •33. Химико-термическая обработка стали, её виды и цели, преследуемые при её проведении.
- •34. Цементация стали, основные этапы технологии, получаемые механические свойства.
- •35. Азотирование стали, основные этапы технологии, получаемые механические свойства.
- •36. Чугун, виды чугунов, их свойства, маркировка, область применения.
- •37. Процесс графитизации, условия его протекания. Влияние графита на свойства чугунов.
- •38. Серый и белый чугуны, их марки, свойства, область применения.
- •39.. Высокопрочный чугун с шаровидным графитом, способ получения, основные свойства, область применения.
- •40. Ковкий чугун, способ получения, основные свойства, область применения.
- •41. Углеродистые конструкционные стали, их виды, маркировка.
- •42. Конструкционные углеродистые стали обычного качества, их виды, область применения, маркировка.
- •43. Легирующие элементы в конструкционных сталях, система маркировки.
- •44. Качественные конструкционные углеродистые стали качества, их виды, область применения, маркировка.
- •45. Конструкционные машиностроительные цементуемые легированные стали.
- •46. Износостойкая аустенитная сталь, её свойства, область применения.
- •47. Коррозионностойкие (нержавеющие) стали и сплавы, легирующие элементы, вводимые в сталь для повышения её коррозионной стойкости, маркировка.
- •49. Инструментальные стали, их виды, свойства, область применения, маркировка.
- •50. Шарикоподшипниковые стали.
- •51. Рессорно-пружинные стали.
- •52. Тугоплавкие металлы и сплавы.
- •53. Титан и сплавы на его основе, их основные свойства, область применения, маркировка.
- •54. Алюминий и сплавы на его основе, их основные свойства, область применения, маркировка.
- •55. Медь и сплавы на её основе, их основные свойства, область применения, маркировка.
- •56. Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой, цинковой и алюминиевой основах, требования, предъявляемые к ним, маркировка.
- •57. Износостойкие (аустенитные) стали.
8.Атомно-кристаллическая структура металлов. Дефекты кристаллического строения металлов.
Для описания кристаллической структуры ме-таллов пользуются понятием кристаллической ре-шетки. Кристаллическая решетка -- это вообра-жаемая пространственная сетка, в узлах которой располагаются атомы (ионы), образующие ме-талл. Частицы вещества (ионы, атомы), из кото-рых построен кристалл, расположены в опреде-ленном геометрическом порядке, который перио-дически повторяется в пространстве. В отличие от кристаллов в аморфных телах (стекло, пласт-массы) атомы располагаются в пространстве бес-порядочно, хаотично.
Формирование кристаллической решетки в ме-талле происходит При пе-реходе металла из жидкого в твердое состояние расстояние между атомами сокращается, а силы взаимодействия между ними возрастают. Харак-тер взаимодействия атомов определяется строе-нием их внешних электронных оболочек. При сближении атомов электроны, находящиеся на внешних оболочках, теряют связь со своими ато-мами вследствие отрыва валентного электрона одного атома положительно заряженным ядром другого и т. д. Происходит образование свобод-ных электронов, так как они не принадлежат отдельным атомам. Таким образом, в твердом состоянии металл представляет собой структуру, состоящую из положительно заряженных ионов, омываемых свободными электронами.
Связь в металле осуществляется электростатическими силами. Между ионами и свободными электронами возникают электростатические силы притяжения, которые стягивают ионы. Такую, связь между частицами металла называют металлической.
Силы связи в металлах определяются силами отталкивания и силами притяжения между ио-нами и электронами. Ионы находятся на таком расстоянии один от другого, при котором потен-циальная энергия взаимодействия минимальна. В металле ионы располагаются в определенном порядке, образуя кристаллическую решетку. Та-кое расположение ионов обеспечивается взаимодействием их с валентными электронами, кото-рые связывают ионы в кристаллической решетке.
1. Объемно-центрированная кубическая решетка (ОЦК)
2. Гранецентрированная кубическая решетка(ГЦК)
3. Гексоганально плотно упакованная решетка
Дефекты: точечные, линейные, поверхностные, объёмные. Точечные: внедрение, вакансия, вызывают искажения. Линейные: дислокации, определяют высокую пластичность материала, эффект имеет длину. Поверхностные: границы зёрен, резко повышают пластичность и снижают прочность материала. Объёмные – порог в металле, дефекты имеют объём. Зерно – кристалл неправильной формы.
9. Строение металлического слитка.
Кристаллы, образующие в процессе затвердевания металла, могут иметь различную форму в зависимости от скорости охлаждения, характера и количества примесей. Чаще в процессе кристаллизации образуются разветвленные (древовидные) кристаллы, получившие название дендритов (рис. 15). При образование кристаллов их развитие идет в основном в направлении перпендикулярном к плоскостям с максимальной плотностью упаковки атомов. В результате чего сперва появляются оси первого порядка, затем перпендикулярно к ним оси второго порядка, затем третьего и так далее. Дендритное строение характерно для макро- и микроструктуры литого металла (сплава).
У поверхности слитка, в результате большой скорости охлаждения образуется тонкий слой мелких равноосных кристаллов, затем по мере удаления от поверхности образуются зона удлиненных дендритных кристаллов по направлению отвода тепла, т.е. перпендикулярно стенкам изложницы. В случае медленного охлаждения могут образоваться в середине слитка равноосные зерна с дендритной структурой (рис.16). Хотя зона столбчатых кристаллов обладает высокой плотностью, на границах эта плотность резко уменьшается, что может привести к возникновению трещин при ковке или прокатке. Поэтому для малопластичных металлов, в том числе для стали, развитие столбчатых кристаллов не желательно. Наоборот, для получения более плотного слитка у пластичных металлов (например, меди и ее сплавов) желательно распространение зоны столбчатых кристаллитов по всему объему слитка. При фасонном литье стремятся получить мелкозернистую равноосную структуру.
Жидкий металл имеет большой удельный объем, чем твердый; поэтому в той части слитка, которая застывает в последнюю очередь, образуется пустота - усадочная раковина. Усадочная раковина обычно окружена наиболее загрязненной частью металла, в которой после затвердевания образуются микро- макропоры и пузыри.
