
- •5.Прочность,ее параметры и еденици измерения
- •8.Атомно-кристаллическая структура металлов. Дефекты кристаллического строения металлов.
- •9. Строение металлического слитка.
- •10. Явление полиморфизма, полиморфные превращения в металлах и сплавах.
- •11. Упругая и пластическая деформация металлов и сплавов. Двойникование, скольжение, текстура деформации. Наклёп поликристаллического металла.
- •12. Влияние нагрева на структуру и свойства деформированного металла. Возврат и полигонизация.
- •13. Рекристаллизация, её виды, вызываемые изменения структуры и свойств.
- •14. Фазы в металлических сплавах (определение, типы фаз).
- •15. Фаза Твёрдые растворы, их виды, принципы формирования.
- •16. Фаза Химические соединения, их виды, принципы формирования.
- •18. Железо и сплавы на его основе, фазы и структура сплава железо-углерод.
- •19. Влияние углерода и постоянных примесей на свойства сталей.
- •20. Влияние легирования на свойства стали. Основные легирующие элементы, применяемые для легирования сталей.
- •21. Общая характеристика превращения переохлаждённого аутсенита (диаграмма изотермического превращения аустенита).
- •22. Перлитное превращение, виды перлитов, условия его протекания, механизм превращения.
- •23. Мартенситное превращение в стали, условия его протекания, механизм превращения. Свойства мартенсита.
- •27. Отжиг 1 рода, виды отжига, цели, преследуемые при его проведении, вызываемые изменение свойств и структуры.
- •28. Отжиг 2 рода виды отжига, цели, преследуемые при его проведении, вызываемые изменение свойств и структуры.
- •29. Закалка стали, необходимые условия, последовательность операций, изменение структуры и свойств.
- •30. Отпуск стали. Виды отпуска. Изменение механических свойств, происходящие при различных видах отпуска.
- •31.Виды Термомеханической обработки и их влияние на свойства стали.
- •32. Поверхностная закалка стали, способы осуществления, изменение механических свойств, достигаемые при её проведении.
- •33. Химико-термическая обработка стали, её виды и цели, преследуемые при её проведении.
- •34. Цементация стали, основные этапы технологии, получаемые механические свойства.
- •35. Азотирование стали, основные этапы технологии, получаемые механические свойства.
- •36. Чугун, виды чугунов, их свойства, маркировка, область применения.
- •37. Процесс графитизации, условия его протекания. Влияние графита на свойства чугунов.
- •38. Серый и белый чугуны, их марки, свойства, область применения.
- •39.. Высокопрочный чугун с шаровидным графитом, способ получения, основные свойства, область применения.
- •40. Ковкий чугун, способ получения, основные свойства, область применения.
- •41. Углеродистые конструкционные стали, их виды, маркировка.
- •42. Конструкционные углеродистые стали обычного качества, их виды, область применения, маркировка.
- •43. Легирующие элементы в конструкционных сталях, система маркировки.
- •44. Качественные конструкционные углеродистые стали качества, их виды, область применения, маркировка.
- •45. Конструкционные машиностроительные цементуемые легированные стали.
- •46. Износостойкая аустенитная сталь, её свойства, область применения.
- •47. Коррозионностойкие (нержавеющие) стали и сплавы, легирующие элементы, вводимые в сталь для повышения её коррозионной стойкости, маркировка.
- •49. Инструментальные стали, их виды, свойства, область применения, маркировка.
- •50. Шарикоподшипниковые стали.
- •51. Рессорно-пружинные стали.
- •52. Тугоплавкие металлы и сплавы.
- •53. Титан и сплавы на его основе, их основные свойства, область применения, маркировка.
- •54. Алюминий и сплавы на его основе, их основные свойства, область применения, маркировка.
- •55. Медь и сплавы на её основе, их основные свойства, область применения, маркировка.
- •56. Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой, цинковой и алюминиевой основах, требования, предъявляемые к ним, маркировка.
- •57. Износостойкие (аустенитные) стали.
37. Процесс графитизации, условия его протекания. Влияние графита на свойства чугунов.
Графитизацией называется процесс выделения графита при кристаллизации или охлаждении чугунов. Графит может образовываться как из жидкой фазы при кристаллизации, так и из твердой фазы. В соответствии с диаграммой Fe—C ниже линии C'D' образуется первичный графит, по линии E'C'F' — эвтектический графит, по линии Е'S' — вторичный графит и по линии P'S'К'— эвтектоидный графит.
Графитизация чугуна и ее полнота зависит от скорости охлаждения, химического состава и наличия центров графитизации.
Влияние скорости охлаждения обусловлено тем, что графитизация чугуна протекает очень медленно и включает несколько стадий:
- -бразование центров графитизации в жидкой фазе или аустените;
- - диффузия атомов углерода к центрам графитизации;
- - рост выделения графита.
При графитизации цементита добавляются стадии предварительного распада Fe3C и растворение углерода в аустените. Чем медленнее охлаждение чугуна, тем большее развитие получает процесс графитизации.
В зависимости от степени графитизации различают чугуны белые, серые и половинчатые.
Белые чугуны — получаются при ускоренном охлаждении и при переохлаждении жидкого чугуна ниже 1 147 °С, когда в силу структурных и кинетических особенностей будет образовываться метастабильная фаза Fe3C, а не графит. Белые чугуны, содержащие связанный углерод в виде Fe3C, отличаются высокой твердостью, хрупкостью и очень трудно обрабатываются резанием. Поэтому они как конструкционный материал не применяются, а используются для получения ковкого чугуна путем графитизирующего отжига.
Серые чугуны — образуются только при малых скоростях охлаждения в узком интервале температур, когда мала степень переохлаждения жидкой фазы. В этих условиях весь углерод или его большая часть графитизируется в виде пластинчатого графита, а содержание углерода в виде цементита составляет не более 0,8 %. У серых чугунов хорошие технологические и прочностные свойства, что определяет широкое применение их как конструкционного материала.
Половинчатые чугуны — занимают промежуточное положение между белыми и серыми чугунами, и в них основное количество углерода (более 0,8 %) находится в виде Fe3C. Чугун имеет структуру перлита, ледебурита и пластинчатого графита.
38. Серый и белый чугуны, их марки, свойства, область применения.
Белые чугуны — получаются при ускоренном охлаждении и при переохлаждении жидкого чугуна ниже 1 147 °С, когда в силу структурных и кинетических особенностей будет образовываться метастабильная фаза Fe3C, а не графит. Белые чугуны, содержащие связанный углерод в виде Fe3C, отличаются высокой твердостью, хрупкостью и очень трудно обрабатываются резанием. Поэтому они как конструкционный материал не применяются, а используются для получения ковкого чугуна путем графитизирующего отжига. Часть белого чугуна идет на получение ковкого чугуна. Серые чугуны — это литейные чугуны: они обладают хорошими литейными качествами — жидкотекучестью, мягкостью, хорошо обрабатываются, сопротивляются износу.
Серые чугуны — образуются только при малых скоростях охлаждения в узком интервале температур, когда мала степень переохлаждения жидкой фазы. В этих условиях весь углерод или его большая часть графитизируется в виде пластинчатого графита, а содержание углерода в виде цементита составляет не более 0,8 %. У серых чугунов хорошие технологические и прочностные свойства, что определяет широкое применение их как конструкционного материала.
Основные области применения серого чугуна -- станкостроение и тяжелое машиностроение (станины станков, разнообразные корпусные детали), автомобильная промышленность и сельскохозяйственное машиностроение, санитарно-техническое оборудование (отопительные радиаторы, трубы, ванны) и др.
В станкостроении серый чугун является основным конструкционным материалом (станины станков, столы и верхние салазки, колонки, каретки и др.); в автомобилестроении из ферритно-перлитных чугунов делают картеры, крышки, тормозные барабаны и др., а из перлитных чугунов — блоки цилиндров, гильзы, маховики и др. В строительстве серый чугун применяют, главным образом, для изготовления деталей, работающих при сжатии (башмаков, колонн), а также санитарно-технических деталей (отопительных радиаторов, труб). Значительное количество чугуна расходуется для изготовления тюбингов, из которых сооружается туннель метрополитена. Из серого чугуна, содержащего фосфор (0,5 %), изготавливают архитектурно-художественные изделия.