 
        
        - •Рязань 2009
- •Глава 1. Предел функции
- •1.1. Определение предела
- •1.2. Операции над пределами
- •1.3. Замечательные пределы
- •1.4. Примеры
- •1.5. Варианты заданий
- •1.6. Контрольные вопросы Глава 2. Производная и дифференциал
- •2.1 Понятие производной
- •2.2. Геометрический и физический смысл производной
- •2.3. Таблица производных
- •2.4. Основные правила дифференцирования
- •2.5. Производные высших порядков
- •2.6. Дифференциал функции
- •2.7. Геометрический смысл и свойства дифференциала
- •2.8. Дифференциалы высших порядков
- •2.9. Примеры
- •2.10. Варианты заданий
- •2.11. Контрольные вопросы
- •Глава 3. Исследование функций и построение графиков
- •3.1. Промежутки монотонности и знакопостоянства
- •3.2. Экстремумы функции
- •3.3. Выпуклость и вогнутость функции. Точка перегиба
- •3.4. Асимптоты
- •3.5.Общая схема исследования функции и построение графиков
- •3.6. Примеры
- •3.7. Варианты заданий
- •3.8. Контрольные вопросы
- •Глава 4. Функции нескольких переменных
- •4.1. Определение функции нескольких переменных
- •4.2. Частные производные
- •4.3. Полный дифференциал
- •4.5. Примеры
- •4.6. Варианты заданий
- •4.7. Контрольные вопросы Глава 5. Численное дифференцирование
- •5.1. Формулы для вычисления первой производной
- •5.2. Формулы второй производной
- •5.3. Примеры
- •5.4. Варианты заданий
- •5.5. Контрольные вопросы Глава 6 Основы интерполяции.
- •6.1. Постановка задачи
- •Интерполяционные формулы конечных разностей
- •6.3. Интерполяционные формулы центральных разностей
- •6.4. Интерполирование функции с не равноотстоящими узлами
- •6.5. Варианты заданий
- •6.6. Контрольные вопросы Глава 7. Неопределенный интеграл
- •7.1. Первообразная функция и неопределенный интеграл
- •7.2. Основные свойства неопределенного интеграла
- •7.3. Таблица простейших интегралов
- •7.4. Основные методы интегрирования
- •7.4.1. Непосредственное интегрирование
- •7.4.2. Метод подстановки (замена переменной)
- •7.4.3. Интегрирование по частям
- •7.5. Примеры
- •7.6. Варианты заданий
- •7.7. Контрольные вопросы
- •Глава 8. Определенный интеграл
- •8.1. Основные понятия и свойства определенного интеграла
- •Свойства определенного интеграла
- •8.2. Основные методы интегрирования
- •8.2.1. Формула Ньютона-Лейбница
- •8.2.2. Метод подстановки
- •8.2.3. Интегрирование по частям
- •8.3. Примеры
- •8.4. Варианты заданий
- •8.5. Биологические, физические и медицинские приложения определенного интеграла
- •8.5.1. Примеры задач прикладного характера.
- •8.5.2. Примеры решения задач.
- •8.5.3. Варианты заданий
- •Глава 9. Численное интегрирование
- •9.1. Формула прямоугольников
- •9.2. Формула трапеций
- •9.3. Метод средних
- •9.4. Формула Симпсона
- •9.5. Примеры
- •9.6. Варианты заданий
- •9.7. Контрольные вопросы
- •Глава 10. Дифференциальные уравнения
- •10.1. Основные определения
- •10.2. Уравнения с разделяющимися переменными
- •10.3. Однородные уравнения первого порядка
- •10.4. Линейные уравнения первого порядка
- •9.5. Примеры
- •I. Метод Лагранжа
- •II. Метод Бернулли
- •1) Метод вариации произвольной постоянной
- •2) Метод подстановки
- •10.6. Варианты заданий
- •10.7. Применение дифференциальных уравнений в биологии и медицине.
- •10.8. Варианты заданий
- •10.9. Контрольные вопросы
- •Глава 11. Численные методы решения дифференциальных уравнений
- •11.1. Метод Эйлера
- •10.2. Метод Рунге – Кутта
- •10.3. Примеры
- •11.4. Варианты заданий
- •11.4. Контрольные вопросы
- •Глава 12. Элементы теории вероятностей
- •12.1. Случайное событие
- •12.2. Комбинаторика
- •12.3. Вероятность случайного события
- •Закон сложения вероятностей
- •12.5. Варианты заданий
- •12.6. Условная вероятность, закон умножения вероятностей
- •12.7. Варианты заданий
- •12.8. Формулы полной вероятности и Байеса
- •12.9. Варианты заданий
- •11.10. Формулы Бернулли, Пуассона и Муавра-Лапласа
- •12.11. Варианты заданий
- •12.2. Случайные величины
- •12.2.1. Закон распределения случайной величины
- •12.2.2. Функция распределения случайных величин
- •12.2.3. Числовые характеристики дискретной случайной величины
- •12.2.4. Плотность вероятности непрерывных случайных величин
- •12.2.5. Нормальный закон распределения
- •12.3. Варианты заданий
- •Глава 13. Статистический анализ результатов исследований
- •13.1. Основные понятия математической статистики
- •13.1. Варианты заданий
- •13.2. Статистические оценки параметров распределения. Выборочные характеристики
- •13.2.1. Характеристики положения
- •13.2.2. Характеристики рассеяния вариант вокруг своего среднего
- •13.3. Варианты заданий
- •13.4. Оценка параметров генеральной совокупности по ее выборке
- •13.4.1. Точечная оценка параметров генеральной совокупности
- •13.5. Варианты заданий
- •13.6. Интервальная оценка параметров генеральной совокупности
- •13.7. Варианты заданий
- •1.8. Контрольные вопросы
- •Глава 14. Корреляционный и регрессионный анализ
- •14.1. Функциональная и корреляционная зависимости
- •14.2. Коэффициент линейной корреляции и его свойства
- •14.3. Проверка гипотезы о значимости выборочного коэффициента линейной корреляции
- •14.4. Выборочное уравнение линейной регрессии. Метод наименьших квадратов
- •14.5. Нелинейная регрессия
- •14.6. Варианты заданий
- •Приложение
- •Критические значения выборочного коэффициента корреляции
- •Критерий Колмогорова – Смирнова Точные и асимптотические границы для верхней грани модуля разности истинной и эмпирической функции распределения
- •Распределение Пирсона (х2– распределение)
- •Распределение Фишера – Снедекора (f-распределение)
- •Библиографический список
- •Содержание
- •Глава 13. Статистический анализ результатов исследований 160
- •Глава 14. Корреляционный и регрессионный анализ 180
7.2. Основные свойства неопределенного интеграла
Приведем основные свойства неопределенного интеграла или правила интегрирования. Предполагается, что все рассматриваемые неопределенные интегралы существуют.
- Неопределенный интеграл от дифференциала функции равен этой функции плюс произвольная постоянная: 
	 .
.
- Дифференциал неопределенного интеграла равен подынтегральному выражению, а производная неопределенного интеграла равна подынтегральной функции: 
	
- Неопределенный интеграл суммы функций равен сумме неопределенных интегралов этих функций: 
	 .
.
- Постоянный множитель  можно выносить за знак неопределенного
					интеграла: можно выносить за знак неопределенного
					интеграла:
	 .
.
- Если F(x) первообразная для функции f(x), то  ,
					гдеk
					и b
					– постоянные. ,
					гдеk
					и b
					– постоянные.
7.3. Таблица простейших интегралов
 
 
 
 
 
 
 
 
 
 
 
 
 , ,
 
 , ,
 
 
7.4. Основные методы интегрирования
7.4.1. Непосредственное интегрирование
Способ непосредственного интегрирования основан на использовании свойств неопределенного интеграла и приведении подынтегрального выражения к табличной форме.
Пример. Найти интегралы:
 . .
Решение. На основании свойств 3 и 4 неопределенного интеграла и таблицы интегралов имеем
	
 . .
Решение. Воспользуемся свойствами 3 и 4 неопределенного интеграла:

 . .
7.4.2. Метод подстановки (замена переменной)
Этот способ заключается в переходе от данной переменной интегрирования к другой переменной для упрощения подынтегрального выражения и приведения его к одному из табличных.
Замена переменной в неопределенном интеграле производится с помощью подстановок двух видов:
 ,
		где t
		– новая переменная, а φ(t)
		– функция, имеющая непрерывную
		производную. Тогда формула замены
		переменной ,
		где t
		– новая переменная, а φ(t)
		– функция, имеющая непрерывную
		производную. Тогда формула замены
		переменной
	 .
.
 ,
		t
		– новая переменная. Формула замены
		переменной при такой подстановке: ,
		t
		– новая переменная. Формула замены
		переменной при такой подстановке:
	
Пример. Найти интегралы, используя подходящую подстановку:
 . .
Решение. Введем подстановку t = x3+5. Тогда dt = d(x3+5); dt=3x2dx. Отсюда x2dx=dt/3. Таким образом,
	 .
.
	Ответ должен быть
	выражен через «старую» переменную х.
	Подставляя в результат интегрирования
	t
	= x3+5.
	Окончательно получим 
	 .
.
 . .
Решение.
	
Условимся в дальнейшем все промежуточные рассуждения и выкладки заключать в вертикальные скобки (как было сделано в примере 2).
7.4.3. Интегрирование по частям
Интегрированием по частям называется нахождение интеграла по формуле
	 ,				(6.4.1)
,				(6.4.1)
	где
	u
	и v
	непрерывно дифференцируемые функции
	от х.
	С помощью формулы (6.4.1)
	нахождение интеграла 
	 сводится к нахождению другого интеграла
сводится к нахождению другого интеграла .
	Применение этой формулы целесообразно
	в тех случаях, когда последний интеграл
	либо проще исходного, либо ему подобен.
.
	Применение этой формулы целесообразно
	в тех случаях, когда последний интеграл
	либо проще исходного, либо ему подобен.
При этом в качестве u берется функция, которая при дифференцировании упрощается, а в качестве dv – та часть подынтегрального выражения, интеграл от которой известен или может быть найден.
	Пример.
	При нахождении интеграла ,
	полагаяu=x–5,
	dv=cosxdx,
	найдем du=dx,
,
	полагаяu=x–5,
	dv=cosxdx,
	найдем du=dx,
		 .
	Следовательно, применяя формулу (6.4.1),
	получим
.
	Следовательно, применяя формулу (6.4.1),
	получим

