Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
30
Добавлен:
13.02.2015
Размер:
5.45 Mб
Скачать

2.3 Цифровые каналы T1 и Е1

Системы (каналы) T1 имеют пропускную способность, соответствующую 24 аналоговым каналам с полосой 0-3.3 кГц (американская версия стандарта). Частота стробирования равна 8 кГц, что соответствует передаче 8000 кадров в сек. После каждых 6000 футов коаксиального кабеля ставятся системы регенерации сигналов. Все 24 канала мультиплексируются на общий коаксиальный кабель, предварительно производится PCM-преобразование сигналов. 24 канала по 8 бит (при 8-битном АЦП) дает 192 бита на кадр. Один дополнительный (193-ий) бит используется для целей синхронизации (F). Таким образом частота бит в канале Т1 составляет 193*8000=1,554 Мбит/с (это стандарт США, его европейский аналог - Е1 имеет 30 каналов и пропускную способность 2048 кбит/c). Это соответствует частоте кадров 667/с. Каждый восьмой бит (младший) байта (временного домена на рис. 2.3.1) используется для целей управления, что несколько снижает пропускную способность. В ISDN каналы 1,544 и 2,048 Мбит/с, форматы которых здесь описаны, называются первичными.

8-битовые pcm-блоки генерируются каждые 125мксек (8000/с). Структура данных при передаче со скоростью 1,544 Мбит/с представлена ниже (isdn 2*B+D):

INCLUDEPICTURE "http://www.citforum.ru/nets/semenov/2/23/image46.gif" \* MERGEFORMATINET

Рис. 2.3.1. Структура кадров для американского (вверху) и европейского (внизу) стандартов передачи данных

Скорости передачи 1,544 (кодирование B8ZS) и 2,048 Мбит/с (HDB3) называются первичными скоростями. Кадры структурированы так, что временные домены (таймдомен на рис. 2.3.1) для передачи данных по каналам B1 и B2 чередуются. В Европе используется 2048Мбит/с интерфейс. Каждый 6-ой кадр используется для сигнальных целей. Количество временных доменов в кадре определяет число телефонных разговоров, которые могут осуществляться одновременно. Для американского стандарта это число равно 24, а для европейского 30 (в последнем случае учтено то, что часть доменов используется в служебных целях).

Все современные коммутаторы управляются центральным процессором. Такие коммутаторы обычно называются коммутаторами, управляемыми встроенной памятью (SPC - Stored Program Controlled exchanges).

2.4 Методы преобразования и передачи звуковых сигналов

Номер раздела

Название раздела

2.4

HYPERLINK "http://www.citforum.ru/nets/semenov/2/24/sound_24.shtml" Методы преобразования и передачи звуковых сигналов

2.4.1

HYPERLINK "http://www.citforum.ru/nets/semenov/2/24/delt_241.shtml" Дельта-модуляция

2.4.2

HYPERLINK "http://www.citforum.ru/nets/semenov/2/24/vcod_242.shtml" Кодировщики голоса (Vocoder)

2.4.3

HYPERLINK "http://www.citforum.ru/nets/semenov/2/24/voic_243.shtml" Передача голоса по каналам Интернет

На физическом уровне в ISDN используется кодово-импульсная модуляция с частотой стробирования 8кГц (что превосходит ограничение Найквиста = 2*3.3кГц, где 3.3кГц - полоса пропускания канала для традиционной телефонной сети). Эмпирически установлено, что для удовлетворительного воспроизведения речи, достаточно 4096 уровней квантования сигнала (12 разрядов АЦП). Такое разрешение диктуется большим динамическим диапазоном сигналов. По этой причине возникает возможность преобразования 12-битных кодов в 8-битные, что формирует информационный поток в 64 Кбит/c. Для этого используется логарифмическое преобразование. Природа позаботилась о человеке, снабдив его логарифмической чувствительностью слуха, в противном случае у нас в мозгу перегорали бы предохранители при близком выстреле или грозовом разряде. Логарифмическое преобразование наталкивается на определенные трудности при низких значениях входного сигнала, ведь логарифм для значений меньше 1 имеет отрицательную величину. Функция же преобразования должна пройти через нуль. В США две логарифмические кривые смещаются в направлении оси ординат (вертикальная ось), в результате получается функция вида:

y ~ log(1 +x)

(так называемая -зависимость [-law])

В Европе используется функция преобразования вида:

y ~ ax

в области значений x вблизи нуля и

y ~ 1 + log(Ax)

при ольшихначениях x (A-зависимость [a-law], см. рис. 2.4.1)

Для дальнейшего упрощения процесса преобразования реальные кривые апроксимируются последовательностью отрезков прямых, наклоны которых каждый раз меняется вдвое. На практике функция табулируется (рекомендация G.711) и отличия - и A-функций пренебрежимо малы. Но следует учитывать, что при реализации практической связи между Европой и Америкой, например телефонной, необходим /A-конвертор.

Для кодирования используется симметричный код, у которого первый бит характеризует полярность сигнала.

INCLUDEPICTURE "http://www.citforum.ru/nets/semenov/2/24/mu_a.jpg" \* MERGEFORMATINET

Рис. 2.4.1. Иллюстрация функций преобразования сигналов

Дальнейшим усовершенствованием схемы pcm является адаптивный дифференциальный метод кодово-импульсной модуляции (Рис. 2.4.2). Здесь преобразуется в код не уровень сигнала в момент времени ti, а разница уровней в моменты ti и ti-1. Так как обычно сигнал меняется плавно, что типично для человеческой речи, можно заметно сократить необходимое число разрядов АЦП. Принципиальное отличие между PCM и ADPCM (1984 год) заключается в использовании адаптивного АЦП и дифференциального кодирования, соответственно. Адаптивный АЦП отличается от стандартного PCM-преобразователя тем, что в любой момент времени уровни квантования расположены однородно (а не логарифмически), причем шаг квантования меняется в зависимости от уровня сигнала. Применение адаптивного метода базируется на том, что в человеческой речи последовательные уровни сигнала не являются независимыми. Поэтому, преобразуя и передавая лишь разницу между предсказанием и реальным значением, можно заметно снизить загрузку линии, а также требования к широкополосности канала. Следует иметь в виду, что метод не лишен серьезных недостатков: уровень шумов, связанный с квантованием сигнала, выше; при резких изменениях уровня сигнала, превышающих диапазон АЦП, возможны серьезные искажения.

INCLUDEPICTURE "http://www.citforum.ru/nets/semenov/2/24/image51.gif" \* MERGEFORMATINET

Рис. 2.4.2. Адаптивный преобразователь голоса в код

Расширение диапазона преобразования достигается умножением шага квантования на величину несколько больше (или меньше) единицы.

При дифференциальном преобразовании на вход кодировщика подается не сам сигнал, а разница между текущим значением сигнала и предыдущим (рис. 2.4.3).

INCLUDEPICTURE "http://www.citforum.ru/nets/semenov/2/24/image52.gif" \* MERGEFORMATINET

Рис. 2.4.3. ADPCM-преобразователь голоса в код для 32кбит/с

Блок прогнозирования является адаптивным фильтром, который использует предшествующий код для оценки последующего стробирования. На вход кодировщика поступает сигнал, пропорциональный разнице между входным сигналом и предсказанием. Чем точнее предсказание, тем меньше бит нужно, чтобы с нужной точностью закодировать эту разницу. Характер человеческой речи позволяет заметно снизить требования к каналу при использовании адаптивного дифференциального преобразователя.

Для компактных музыкальных дисков (cd) характерна полоса 50Гц - 20 кГц, обычная же речь соответствует полосе 50 Гц - 7 кГц. Только звуки типа Ф или С имеют заметные составляющие в высокочастотной части звукового спектра. Для высококачественной передачи речи используется субдиапазонный ADPCM-преобразователь (Adaptive Differential Pulse Code Modulation). В нем звук сначала стробируется с частотой 16 кГц, производится преобразование в цифровой код с разрешением не менее 14 бит, а затем подается на квадратурный зеркальный фильтр (qmf), который разделяет сигнал на два субдиапазона (50Гц-4кГц и 4кГц-7кГц). Диапазоны этих фильтров перекрываются в области 4кГц. Нижнему диапазону ставится в соответствие 6 бит (48кбит/с), а верхнему 2 бита (16 Кбит/с). Выходы этих фильтров мультиплексируются, формируя 64 кбит/с -поток.

На CD используется 16-битное кодирование с частотой стробирования 44,1 кГц, что создает информационный поток 705 Кбит/c. Для стерео сигнала этот поток может удвоиться. Практически это не так - сигналы в стереоканалах сильно коррелированны, и можно кодировать и передавать лишь их разницу, на практике высокочастотные сигналы каналов суммируются, для различия каналов передается код их относительной интенсивности. Исследования показывают, что для акустического восприятия тонкие спектральные детали важны лишь в окрестности 2 кГц. Для передачи звуковой информации с учетом этих факторов был разработан стандарт MUSICAM (Masking pattern Universal Sub-band Integrated Coding and Multiplexing), который согласуется с ISO MPEG (Moving Picture Expert Group; стандарт ISO 11172). musicam развивает идеологию деления звукового диапазона на субдиапазоны, здесь 20кГц делится на 32 равных интервалов. Логарифмическая чувствительность человеческого уха и эффект маскирования позволяет уменьшить число разрядов кодирования. Эффект маскирования связан с тем, что в присутствии больших звуковых амплитуд человеческое ухо нечувствительно к малым амплитудам близких частот. Причем чем ближе частота к частоте маскирующего сигнала, тем сильнее этот эффект (см. рис. 2.4.4). Сплошной линией на рисунке показана нормальная зависимость порога чувствительности уха, а пунктиром - зависимость порога чувствительности в присутствии 500-герцного тона с амплитудой в 110 дБ.

INCLUDEPICTURE "http://www.citforum.ru/nets/semenov/2/24/masking.jpg" \* MERGEFORMATINET

Рис. 2.4.4.Изменение порога чувствительности человеческого уха под влиянием эффекта маскирования.

При разбиении на субдиапазоны можно оценить эффект маскирования и передавать только ту часть информации, которая этому эффекту не подвержена. При этом уровень ошибок квантования следует держать лишь ниже порога маскирования, что также снижает информационный поток. Для стробирования высококачественных звуковых сигналов используются частоты 32, 44,1 или 48 кГц. Стандартом предусмотрено три уровня кодирования звука, отличающиеся по сложности и качеству. На первом уровне производится разбивка на 32 диапазона, определение диапазонных коэффициентов и формирование кадров, несущих по 384 результатов стробирования. Уровень 2 формирует кадры с 1152 результатами стробирования и дополнительными данными. Уровень 3 допускает динамическое разбиение на субдиапазоны и уплотнение данных с использованием кодов Хафмана. Любой декодер способен работать на своем и более низком уровне.

Для улучшения качества передачи низких частот в дополнение к суб-диапазонным фильтрам, используется быстрое Фурье-преобразование (FFT). Результирующая частота бит при передаче звуковых данных оказывается не постоянной. Практическое измерение показывает, что частота редко превышает 110кбит/с, применение 128кбит/с делает качество воспроизведения неотличимым от CD. Ограничение скорости на уровне 64 Кбит/с вносит лишь незначительные искажения.

Ниже в таблицах представлены данные по скоростям передачи аудиоданных по традиционным цифровым и отповолоконным каналам (см. также раздел 3.5.6).

Таблица 2.4.1 Скорости передачи данных по цифровым каналам

Линия

Быстродействие Мбит/с

Число аудио каналов

DS-0

0,064

1

T-1

1,544

24

T-1C

3,152

48

T-2

6,312

96

T-3

44,736

672

Таблица 2.4.2. Скорости передачи данных по оптическим каналам

Линия OC-x

Быстродействие Мбит/с

Число аудио каналов

STM-x

1

51,84

672

-

3

155,52

2016

1

9

466,56

6048

3

12

622.08

8064

4

24

1244,16

16128

8

48

2488,32

32256

16

96

4976,64

64512

32

192

9953,28

129024

64

Еще одним методом, нацеленным на повышение эффективности преобразования входного аналогового сигнала в код, является дельта-модуляция.

2.4.1 Дельта-модуляция

Дельта-модуляция представляет собой вариант дифференциальной импульсно-кодовой модуляции, где для кодирования разностного сигнала используется только один бит. Этот бит служит для того, чтобы увеличить или уменьшить оценочный уровень. Примером реализации дельта-модуляции может служить схема, показанная на рис. 2.4.1.1. Сигнал ЦАП отслеживает входной сигнал in(t). Здесь компаратор заменил дифференциальный усилитель, который используется в дифференциальном импульсно-кодовом модуляторе.

INCLUDEPICTURE "http://www.citforum.ru/nets/semenov/2/24/image48.gif" \* MERGEFORMATINET

Рис. 2.4.1.1 Схема устройства линейной дельта-модуляции

Если скорость нарастания входного сигнала велика, то уровень на выходе ЦАП будет отставать и сможет нагнать In(t) только, когда входной сигнал начнет уменьшаться. Данный метод не является разумной альтернативой PCM. Для улучшения характеристик дельта-преобразователя реверсивный счетчик можно заменить цифровым процессором, при этом шаг S становится переменным, но кратным некоторому базовому значению.

Существуют много других способов кодирования человеческого голоса, среди них наиболее эффективный реализован в приборах, носящих название - вокодер (VOCODER).

Previous: HYPERLINK "http://www.citforum.ru/nets/semenov/2/24/sound_24.shtml" 2.4 Методы преобразования и передачи звуковых сигналов    UP: HYPERLINK "http://www.citforum.ru/nets/semenov/2/24/sound_24.shtml" 2.4 Методы преобразования и передачи звуковых сигналов    Next: HYPERLINK "http://www.citforum.ru/nets/semenov/2/24/vcod_242.shtml" 2.4.2 Кодировщики голоса (Vocoder)

2.4.2 Кодировщики голоса (Vocoder)

Эта технология находит применение в военных системах связи, в диспетчерских службах, а также в системах пейджерной связи. Разработчики преобразователей голоса учли особенности работы горла, голосовых связок и всего речевого аппарата. Звонкие и глухие звуки воспроизводятся здесь различными способами (с помощью импульсного генератора и генератора шума, соответственно). Блок-схема преобразователя звука типа вокодер показана на рис. 2.4.2.1. Исходный спектр человеческого голоса здесь делится на ряд субдиапазонов (на рис. 2.4.2.1 их число равно16) по 200 Гц каждый. Эти субдиапазоны выделяются узкополосными фильтрами, за которыми следуют выпрямители и фильтры низких частот (20 Гц). Выходные сигналы этих фильтров мультиплексируются и преобразуются в цифровую форму. Частота стробирования этих сигналов составляет примерно 50 Гц. Разрядность АЦП в этом случае может составлять 3 бита. На принимающей стороне осуществляется цифро-аналоговое преобразование (ЦАП) и мультиплексирование. Сбалансированные амплитудные модуляторы, управляемые ЦАП и переключателем, выдают сигналы на узкополосные фильтры. Все эти сигналы смешиваются в сумматоре, а результат воспроизводится.

Не трудно видеть, что в случае схемы, показанной на рис. 2.4.2.1, необходимое быстродействие передающей линии составляет 3 бита * 50 Гц * 16 каналов = 2,4 Кбит/с. Дальнейший выигрыш может быть получен за счет цифрового сжатия. Число каналов (фильтров) и ширина пропускаемой полосы частот может варьироваться, соответственно будет меняться и качество воспроизведения звука. Минимально возможная полоса пропускания передающей линии, при которой значение передаваемого текста еще воспринимается правильно, лежит ниже 1 Кбит/с.

Предшествующая фраза, включая пробелы и знаки препинания, содержит около 150 символов. Для ее произношения требуется около 10 сек (15 символов в сек). Но даже вокодеру потребуется для этого предложения передать не менее 10000 бит. Откуда такое отличие? Во-первых, человеческая речь индивидуальна и эта фраза, произнесенная разными людьми, будет звучать по-разному, кроме того, существует эмоциональная окраска, которой практически лишена буквенная запись. Во-вторых, даже самая совершенная современная система сжатия звуковой информации не идеальна и остается широкое поле для дальнейшего совершенствования. Пути могут быть разными в зависимости от поставленной задачи. Если требуется передать только информацию, следует преобразовать звук в символьную (буквенную) форму, передать эти данные в цифровом виде, а на принимающей стороне осуществить обратное преобразование. Само буквенное представление может быть также подвергнуто некоторому сжатию, но это неизбежно увеличит задержку воспроизведения. В сущности, данная схема является развитием идей, заложенных в вокодере.

В случае необходимости передачи индивидуальных особенностей голоса, сначала должен проводиться анализ этих персональных отличий. Особенности голоса в закодированном виде передаются принимающей стороне, где эти данные используются в дальнейшем при воспроизведении закодированного текста. Эти схемы потребуют довольно мощных сигнальных процессоров и, вероятно, найдут применение лишь в следующем веке.

INCLUDEPICTURE "http://www.citforum.ru/nets/semenov/2/24/image62.gif" \* MERGEFORMATINET

Рис. 2.4.2.1. Блок-схема кодирования/декодирования человеческого голоса (Vocoder)

2.4.3 Передача голоса по каналам Интернет

Несколько лет назад появился новый вид услуг в Интернет - голосовая связь (IP-phone, Vocaltec). Сегодня имеется 30 миллионов абонентов, регулярно пользующихся IP-phone и его аналогами, ожидается до 200 миллионов до конца текущего десятилетия, качество передачи постепенно приближается к уровню цифровой телефонии.

Среди пользователей есть те, для кого это лишь возможность общения, как для радиолюбителей; но все больше людей использует IP-phone для деловых контактов или даже как объект бизнеса.

Существуют два алгоритма сжатия звуковой информации, используемых для ip-телефонных переговоров: GSM (global system for mobile communications, ftp.cs.tu-berlin.de/pub/local/kbs/tubmik/gsm), которая обеспечивает коэффициент сжатия 5, и алгоритм DSP-группы (true speech) с коэффициентом сжатия данных 18 (работает при частотах 7.7 кбит/с). Добавление аппаратных средств сжатия информации позволяет сократить необходимую полосу до 6.72 Кбит/с. Потеря 2-5% пакетов остается незамеченной, 20% оставляет разговор понятным. В таблице 2.4.3.1 представлена зависимость необходимой полосы телекоммуникационного канала от частоты стробирования звукового сигнала, которая определяет качество воспроизведения.

Таблица 2.4.3.1.

Пропускная способность [бит/с]

Частота стробирования [1/с]

9600

4000

14400

6000

19200

8000

28800

11000

Для подключения к сети ip-phone необходима мультимедийная карта, микрофон, динамики (или наушники), 8 Мбайт оперативной памяти, доступ к Интернет и соответствующее программное обеспечение. Качество передачи звука зависит от загруженности IP-канала. В качестве транспорта используется протокол UDP. Для обеспечения высокого качества звука нужна гарантированная ширина IP-канала, ведь задержанные сверх меры UDP-дейтограммы теряются безвозвратно, что и приводит к искажениям. Внедрение протоколов, гарантирующих определенную ширину канала сделают IP-phone значительно более привлекательным. Многие компании уже предлагают такое оборудование и программы. Программы и описания этого вида услуг можно найти по адресам:

HYPERLINK "ftp:// cs.ucl.ac.uk/mice/videoconference/vat" ftp://cs.ucl.ac.uk/mice/videoconference HYPERLINK "http://www.pulver.com/netwatch" http://www.pulver.com/netwatch HYPERLINK "http://www.planeteers.com" http://www.planeteers.com HYPERLINK "http://www.newparadigm.com" http://www.newparadigm.com HYPERLINK "http://www.vocaltec.com" http://www.vocaltec.com HYPERLINK "http://www.itelco.com" http://www.itelco.com HYPERLINK "http://www.quarterdeck.com" http://www.quarterdeck.com

В последнее время технология передачи звука по каналам Интернет стала широко использоваться для трансляции новостей и музыки. При этом обеспечивается вполне удовлетворительное качество даже при передаче стерео программ. В этом случае имеется возможность применить более эффективное сжатие информации и протоколы типа HYPERLINK "http://www.citforum.ru/nets/semenov/4/44/rtp_4492.shtml" RTP и RTCP. Задержка при передаче в этом случае никакого значения не имеет, а качество доставки гарантировано. Современные системы ip-телефонии снабжены гибкой системой буферов, позволяющих использовать для передачи паузы, когда один из партнеров молчит. (См. также "RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals. H. Schulzrinne, S. Petrack. May 2000" RFC-2833 и "URLs for Telephone Calls. A. Vaha-Sipila. April 2000". RFC-2806).

В настоящее время имеется практически полный набор технологий, чтобы создать электронную книгу. Такая книга будет представлять собой систему размером с ноут-бук, снабженное устройством для чтения CD-дисков. Текст книги вместе с иллюстрациями и необходимыми командными последовательностями записывается на CD. При этом в перспективе можно рассматривать возможность того, что такое устройство будет читать "книгу" вслух (вывод на наушники). В настоящее время имеется достаточно большое количество книг, записанных на cd. Это, прежде всего, энциклопедические словари, альбомы музеев, библия и многие другие. Преимущество такой формы книги уже сегодня ощутимо - вы можете использовать современные поисковые средства, чтобы найти нужный раздел или какую-то конкретную информацию. По мере развития этой технологии и интеграции ее с сетями можно будет осуществлять поиск не только по данной книге, но и по книгам или журналам, ссылки на которые в данной книге содержатся, что может быть особенно полезно при первичном знакомстве с какой-то проблемой. Я здесь не говорю о компактности, а в перспективе, и долговечности такой формы записи информации. При звуковом воспроизведении читатель сможет выбирать, голосом какого актера или актеров будет читаться данная книга. Разумеется, для этого не потребуется начитывать данный текст самим актерам. Достаточно иметь запись характерных особенностей голоса и интонаций конкретного голоса, а процессор сам при генерации звука будет использовать голосовые особенности того или иного человека. Немного фантазии и можно будет представить, как ЭВМ будет воспроизводить текст в виде фильма, который она сгенерировала по выданному ей тексту (ведь сгенерирован же на ЭВМ корабль "Титаник" и море, по которому он плывет). Аналогичные услуги смогут оказываться и через сеть Интернет. Наибольшие трудности вызовет реализация качественного воспроизведения. Программы способные преобразовывать символьный текст в голос уже существуют. Проблема распознавания индивидуального голоса давно решена в охранных системах. Осталось научиться использовать результаты такого анализа при воспроизведении.

Активно разрабатываются многие новые стандарты и протоколы для обеспечения передачи звука по ip-каналам, проведения видеоконференций и управления в реальном масштабе времени. К таким протоколам относятся RTP (real time protocol, RFC-1889, -1890), RTCP (real-time control protocol), который является дополнением RTP, и RSVP (resource reservation protocol, см. разделы проектов IETF nic.nordu.net, ftp.isi.edu, munnari.oz.au и ds.internic.net или ftp.ietf.org/internet-drafts/draft-ietf-rsvp-spec-16.txt), служащий для обеспечения своевременной доставки данных при работе в реальном времени. Протокол RTP способен работать помимо UDP/IP в сетях CLNP, ATM и IPX. Он обеспечивает детектирование потерь, идентификацию содержимого, синхронизацию и безопасность (доступ по шифрованному паролю, см. RFC-1423). Проблема синхронизации при передаче звука особенно важна, так как даже для локальных сетей время доставки пакетов может варьироваться в весьма широких пределах из-за используемого алгоритма доступа (например, CSMA/CD), а это приводит к искажениям при воспроизведении. Протоколы RTP и RTCP позволяют одновременное голосовое общение неограниченного числа людей в рамках сети Интернет. Протокол же RSVP (или его аналог) в случае внедрения гарантирует качество связи (разумеется, при достаточной широкополосности канала) за счет повышения приоритета пакетов реального времени. Следует иметь в виду, что голосовое общение, хотя и весьма привлекательно, не является единственной и даже главной целью разработчиков. По мере совершенствования протоколов Интернет сделает возможным управление в реальном масштабе времени довольно сложными удаленными объектами.

В таблице 2.4.2 представлены характеристики аудио-кодеков, которые можно использовать в IP-телефонии.

Таблица 2.4.2. Характеристики аудио-кодеков

Кодек

Выходная скорость кодека

G.711

64 кбит/с

g.723.1

5,3 или 6,4 кбит/с

g.722

48, 56 или 64 кбит/с

g.728

16 кбит/с

g.728/g.729a

8 кбит/с

При внедрении ip-телефонии желательно, чтобы сетевая инфраструктура обеспечивала:

  • Время задержки в одну сторону менее 100 мсек.

  • Вероятность потери пакета менее 5%.

  • Оборудование должно соответствовать требованиям H.323v2, а механизмы безопасности - стандарту H.235.

  • Наличие функции привратника в маршрутизаторе/шлюзе (блокирует установку новых телефонных соединений при отсутствии необходимых ресурсов)

Одна из возможных реализаций IP-телефонии показана на рис. 2.4.3.1. (MVD Multiflex Voice/WAN модуль, включаемый в маршрутизатор, например, Cisco-3662).

INCLUDEPICTURE "http://www.citforum.ru/nets/semenov/2/24/ip_pho.jpg" \* MERGEFORMATINET Рис. 2.4.3.1. Пример реализации системв IP-телефонии

На рисунке MVW-модуль (Multiflex Voice/WAN), включаемый в маршрутизатор, например, CISCO-3662, служит для связи с общедоступной телефонной сетью. Если сеть азмещена в Рио-де-Жанейро, а Москве, то любой клиент нижней сети сможет разговаривать с клиентом в Рио есплатноа с клиентами телефонных сетей о локальным тарифам. В левой части рисунка показаны телефонные аппараты, которые подключаются непосредственно к сегменту локальной сети. Такие приборы уже поступили в продажу.

Связь может осуществляться как с традиционной старой аналоговой телефонной сетью, так и с ISDN. Телефонные аппараты могут подключаться непосредственно к интерфейсу маршрутизатора, к сетевой рабочей станции или к специальному сетевому адаптеру.

Соседние файлы в папке semenov_yu_a_telekommunikacionnye_tehnologii