
- •Санкт-Петербургский Государственный Институт Психологии и Социальной Работы
- •Математические методы в психологии Учебно-методическое пособие
- •Аннотация
- •Глава 1. Описательная статистика 18
- •Глава 2. Индуктивная статистика 84
- •Оглавление
- •Глава 1. Описательная статистика 12
- •Глава 2. Индуктивная статистика 78
- •Введение Цели и задачи изучения дисциплины «Математические методы в психологии» и сфера профессионального использования
- •Методические указания для студентов
- •Контрольные вопросы для самостоятельной подготовки и самопроверки
- •Глава 1. Описательная статистика
- •1. 1. Математическая статистика и психология. Измерения в психологии и виды шкал
- •Материалы лекции.
- •Типы измерений и измерительные шкалы
- •Генеральная совокупность и выборочное исследование. Статистическая достоверность
- •Этапы обработки результатов психологического исследования
- •1. 2. Описание результатов исследования
- •Материалы лекции.
- •Результаты исследования экстраверсии
- •Алгоритм построения сгруппированного (или табулированного) ряда
- •Общий обзор параметров распределений
- •1. 3. Параметры статистических совокупностей
- •Материалы лекции.
- •Результаты исследования экстраверсии
- •Исключение выскакивающих значений
- •Нормальный закон распределения и другие виды распределений
- •Проверка «нормальности» эмпирического распределения
- •Стандартизация данных и стандартизованные шкалы в психологии
- •Процентильные нормы для детей 5;5 – 11 лет
- •1. 4. Характеристики взаимосвязи признаков
- •Материалы лекции. Понятие статистической зависимости
- •Общий обзор мер связи
- •Коэффициент контингенции
- •Критерий «хи-квадрат» Пирсона
- •Ранжирование
- •Правила ранжирования
- •Бисериальные коэффициенты корреляции
- •Коэффициент взаимной сопряженности Чупрова
- •Коэффициент взаимной сопряженности Пирсона
- •Ранговой коэффициент корреляции Спирмена
- •Коэффициент линейной корреляции Пирсона
- •Глава 2. Индуктивная статистика
- •2. 1. Решение задачи сравнения выборок. Понятие статистических критериев и их виды
- •Материалы лекции. Статистические гипотезы
- •Уровень статистической значимости
- •Этапы принятия статистического решения
- •Классификация исследовательских задач, решаемых с помощью статистических методов
- •Решение задачи сравнения выборок
- •4. Каковы ограничения в применении критерия?
- •Обзор наиболее часто применяемых параметрических критериев
- •Общий обзор непараметрических критериев
- •2. 2. Выявление различий в уровне исследуемого признака
- •Материалы лекции. Параметрический критерий Стьюдента для сравнения независимых выборок
- •Поправка Снедекора
- •Правило принятия решения описано выше. Непараметрический критерий Розенбаума (критерий «хвостов»)
- •Непараметрический критерий Манна-Уитни
- •2. 3. Оценка достоверности сдвига в значениях исследуемого признака
- •Материалы лекции.
- •Параметрический критерий Стьюдента для сравнения зависимых выборок
- •Непараметрический критерий знаков
- •6. Правило принятия решения:
- •Непараметрический критерий Вилкоксона
- •2. 4. Выявление различий в распределении признака
- •Материалы лекции. Критерий «хи-квадрат» Пирсона
- •Критерий Колмогорова-Смирнова
- •2. 5. Многофункциональные статистические критерии
- •Материалы лекции.
- •Критерий φ* — «Угловое преобразование» Фишера
- •Алгоритм расчета критерия φ*
- •Критерий Макнамары
- •Алгоритм расчет критерия
- •2. 6. Дисперсионный анализ
- •Материалы лекции. Введение в дисперсионный анализ anova
- •Однофакторный дисперсионный анализ
- •2. 7. Многомерные методы обработки данных
- •Материалы лекции.
- •I. Классификация методов по назначению:
- •II. Классификация методов по исходным предположениям о структуре данных:
- •III. Классификация методов по виду исходных данных:
- •Множественный регрессионный анализ
- •Матрица корреляций пяти показателей интеллекта
- •Факторные нагрузки после варимакс-вращения
- •1. Эксплораторный-разведочный.
- •2. Конфирматорный.
- •1. Выбор исходных данных.
- •2. Предварительное решение проблемы числа факторов.
- •3. Факторизация матрицы интеркорреляций.
- •4. Вращение и предварительная интерпретация факторов (ротация факторов).
- •5. Принятие решения о качестве факторной структуры.
- •6. Вычисление факторных коэффициентов и оценок.
- •Компьютерные пакеты прикладных статистических программ
- •Список литературы
- •Приложение 1. Статистические таблицы с критическими значениями
- •1.1. Критические значения отношения для исключения выскакивающих значений
- •1.2. Критические значения коэффициента ранговой корреляции Спирмена
- •1.3. Критические значения коэффициента линейной корреляции Пирсона
- •1.4. Критические значения критерия хи-квадрат Пирсона
- •1.5. Критические значения критерия Стьюдента
- •1.6. Критические значения критерия Фишера
- •1.7. Критические значения непараметрического критерия Манна-Уитни
- •1.8. Критические значения непараметрического критерия Вилкоксона
- •1.9. Таблицы для перевода процентных долей в величины центрального угла для расчета критерия «угловое преобразование» Фишера
- •Приложение 2. Глоссарий
- •Приложение 3. Англо-русский словарь статистических терминов
Коэффициент взаимной сопряженности Чупрова
Коэффициент взаимной сопряженности Чупрова Кявляется мерой связи двух признаков, если один из них измерен по шкале наименований и может иметь несколько значений (больше двух), а второй признак измерен по такой же шкале или по шкале порядка, или по шкале интервальной, или по шкале пропорциональной.
Этот коэффициент рассчитывается с помощью критерия хи-квадрат Пирсона, расчетное значение которого подставляется в формулу:
при k≠m, гдеk— число градаций одного признака,m— число градаций значений другого признака
при
k=m
Таблиц с критическими значениями для коэффициента взаимной сопряженности Чупрова не существует. Поэтому поступают следующим образом:
Вычисляют расчетное значение критерия хи-квадрат Пирсона. Обратите вниманиена то, что ограничения в использовании этого коэффициента соответствуют ограничениям критерия хи-квадрат Пирсона, а именно: объем выборки должен бытьN≥30 и теоретическая частота в ячейках должна бытьf≥ 5.
Сравнивают его с критическим значением для соответствующего числа степеней свободы.
Если χ2расч< χ2табл, то расхождения между распределениями статистически недостоверны, или признаки изменяются несогласованно, или связи между признаками нет. Делается вывод об отсутствии взаимосвязи. Величину коэффициента К можно в этом случае не вычислять.
Если χ2расч≥ χ2табл, то расхождения между распределениями статистически достоверны, или признаки изменяются согласованно, или связь между признаками статистически значима.
Далее вычисляется значение коэффициента взаимной сопряженности Чупрова, которое и является мерой связи. Чем больше это значение по абсолютной величине, тем сильнее взаимосвязь. Напоминаю, что знак коэффициента взаимной сопряженности Чупрова не интерпретируется, так как он не указывает на направление взаимосвязи, потому что зависит от обозначений градаций значений признака.
Коэффициент взаимной сопряженности Пирсона
Коэффициент взаимной сопряженности Пирсона Стакже является мерой связи двух признаков, если один из них измерен по шкале наименований и может иметь несколько значений (больше двух), а второй признак измерен по такой же шкале или по шкале порядка, или по шкале интервальной, или по шкале пропорциональной.
Этот коэффициент также рассчитывается с помощью критерия хи-квадрат Пирсона, расчетное значение которого подставляется в формулу:
,
где N— общий объем
выборки.
Таблиц с критическими значениями для коэффициента взаимной сопряженности Пирсона не существует. Поэтому поступают следующим образом:
Вычисляют расчетное значение критерия хи-квадрат Пирсона.
Сравнивают его с критическим значением для соответствующего числа степеней свободы.
Если χ2расч< χ2табл, то расхождения между распределениями статистически недостоверны, или признаки изменяются несогласованно, или связи между признаками нет. Делается вывод об отсутствии взаимосвязи. Величину коэффициента С можно в этом случае не вычислять.
Если χ2расч≥ χ2табл, то расхождения между распределениями статистически достоверны, или признаки изменяются согласованно, или связь между признаками статистически значима.
Далее вычисляется значение коэффициента взаимной сопряженности Пирсона, которое и является мерой связи. Чем больше это значение (величина этого коэффициента может быть только положительной и изменяется от 0,00 до +1,00), тем сильнее взаимосвязь.
Обратите вниманиена то, что ограничения в использовании этого коэффициента соответствуют ограничениям критерия хи-квадрат Пирсона, а именно: объем выборки должен бытьN≥30 и теоретическая частота в ячейках должна бытьf≥ 5.
Сравнение двух последних коэффициентов показало, что в одних и тех же случаях коэффициент взаимной сопряженности Пирсона дает несколько бóльшие значения меры связи.
Следует учитывать при выборе меры связи и то, что коэффициент взаимной сопряженности Чупрова рекомендуется использовать в тех случаях, когда число градаций значений признаков невелико, так как этот коэффициент менее чевствителен к количеству событий.