- •Санкт-Петербургский Государственный Институт Психологии и Социальной Работы
- •Математические методы в психологии Учебно-методическое пособие
- •Аннотация
- •Глава 1. Описательная статистика 18
- •Глава 2. Индуктивная статистика 84
- •Оглавление
- •Глава 1. Описательная статистика 12
- •Глава 2. Индуктивная статистика 78
- •Введение Цели и задачи изучения дисциплины «Математические методы в психологии» и сфера профессионального использования
- •Методические указания для студентов
- •Контрольные вопросы для самостоятельной подготовки и самопроверки
- •Глава 1. Описательная статистика
- •1. 1. Математическая статистика и психология. Измерения в психологии и виды шкал
- •Материалы лекции.
- •Типы измерений и измерительные шкалы
- •Генеральная совокупность и выборочное исследование. Статистическая достоверность
- •Этапы обработки результатов психологического исследования
- •1. 2. Описание результатов исследования
- •Материалы лекции.
- •Результаты исследования экстраверсии
- •Алгоритм построения сгруппированного (или табулированного) ряда
- •Общий обзор параметров распределений
- •1. 3. Параметры статистических совокупностей
- •Материалы лекции.
- •Результаты исследования экстраверсии
- •Исключение выскакивающих значений
- •Нормальный закон распределения и другие виды распределений
- •Проверка «нормальности» эмпирического распределения
- •Стандартизация данных и стандартизованные шкалы в психологии
- •Процентильные нормы для детей 5;5 – 11 лет
- •1. 4. Характеристики взаимосвязи признаков
- •Материалы лекции. Понятие статистической зависимости
- •Общий обзор мер связи
- •Коэффициент контингенции
- •Критерий «хи-квадрат» Пирсона
- •Ранжирование
- •Правила ранжирования
- •Бисериальные коэффициенты корреляции
- •Коэффициент взаимной сопряженности Чупрова
- •Коэффициент взаимной сопряженности Пирсона
- •Ранговой коэффициент корреляции Спирмена
- •Коэффициент линейной корреляции Пирсона
- •Глава 2. Индуктивная статистика
- •2. 1. Решение задачи сравнения выборок. Понятие статистических критериев и их виды
- •Материалы лекции. Статистические гипотезы
- •Уровень статистической значимости
- •Этапы принятия статистического решения
- •Классификация исследовательских задач, решаемых с помощью статистических методов
- •Решение задачи сравнения выборок
- •4. Каковы ограничения в применении критерия?
- •Обзор наиболее часто применяемых параметрических критериев
- •Общий обзор непараметрических критериев
- •2. 2. Выявление различий в уровне исследуемого признака
- •Материалы лекции. Параметрический критерий Стьюдента для сравнения независимых выборок
- •Поправка Снедекора
- •Правило принятия решения описано выше. Непараметрический критерий Розенбаума (критерий «хвостов»)
- •Непараметрический критерий Манна-Уитни
- •2. 3. Оценка достоверности сдвига в значениях исследуемого признака
- •Материалы лекции.
- •Параметрический критерий Стьюдента для сравнения зависимых выборок
- •Непараметрический критерий знаков
- •6. Правило принятия решения:
- •Непараметрический критерий Вилкоксона
- •2. 4. Выявление различий в распределении признака
- •Материалы лекции. Критерий «хи-квадрат» Пирсона
- •Критерий Колмогорова-Смирнова
- •2. 5. Многофункциональные статистические критерии
- •Материалы лекции.
- •Критерий φ* — «Угловое преобразование» Фишера
- •Алгоритм расчета критерия φ*
- •Критерий Макнамары
- •Алгоритм расчет критерия
- •2. 6. Дисперсионный анализ
- •Материалы лекции. Введение в дисперсионный анализ anova
- •Однофакторный дисперсионный анализ
- •2. 7. Многомерные методы обработки данных
- •Материалы лекции.
- •I. Классификация методов по назначению:
- •II. Классификация методов по исходным предположениям о структуре данных:
- •III. Классификация методов по виду исходных данных:
- •Множественный регрессионный анализ
- •Матрица корреляций пяти показателей интеллекта
- •Факторные нагрузки после варимакс-вращения
- •1. Эксплораторный-разведочный.
- •2. Конфирматорный.
- •1. Выбор исходных данных.
- •2. Предварительное решение проблемы числа факторов.
- •3. Факторизация матрицы интеркорреляций.
- •4. Вращение и предварительная интерпретация факторов (ротация факторов).
- •5. Принятие решения о качестве факторной структуры.
- •6. Вычисление факторных коэффициентов и оценок.
- •Компьютерные пакеты прикладных статистических программ
- •Список литературы
- •Приложение 1. Статистические таблицы с критическими значениями
- •1.1. Критические значения отношения для исключения выскакивающих значений
- •1.2. Критические значения коэффициента ранговой корреляции Спирмена
- •1.3. Критические значения коэффициента линейной корреляции Пирсона
- •1.4. Критические значения критерия хи-квадрат Пирсона
- •1.5. Критические значения критерия Стьюдента
- •1.6. Критические значения критерия Фишера
- •1.7. Критические значения непараметрического критерия Манна-Уитни
- •1.8. Критические значения непараметрического критерия Вилкоксона
- •1.9. Таблицы для перевода процентных долей в величины центрального угла для расчета критерия «угловое преобразование» Фишера
- •Приложение 2. Глоссарий
- •Приложение 3. Англо-русский словарь статистических терминов
1. 4. Характеристики взаимосвязи признаков
Методические рекомендации к изучению темы
При изучении темы таблицу 1 необходимо выучить наизусть, это поможет в дальнейшем выбирать меры оценки взаимосвязей, адекватные данному конкретному случаю. Обратите внимание на то, что пользование данной таблицей предполагает ответ на вопрос — по каким шкалам измерены признаки, между которыми оценивается взаимосвязь.
При работе с алгоритмами мер связи внимательно изучите возможные ограничения в применении и все шаги алгоритма.
После изучения материала лекции ответьте на контрольные вопросы, решите примеры, ответы занесите в конспект.
Материалы лекции. Понятие статистической зависимости
Зависимость (взаимосвязь) между случайными событиями состоит в том, что появление одного из событий изменяет вероятность появления другого события.
Факт взаимосвязи между случайными событиями состоит в совместном изменении меры возможностей их появления (частоты, частости, вероятности). По наличию или отсутствию такого изменения и судят о наличии или отсутствии зависимости между событиями. Это изменение устанавливается на основе анализа двумерного вариационного ряда или таблицы сопряженности.
Например, у некоторой группы людей измерялись два признака. Признак xi, который может принимать одно из четырех значений, и признакyj, который может принимать одно из трех значений. В этом случае таблица сопряженности будет выглядеть следующим образом:
Таблица 12
|
xi yj |
x1 |
x2 |
x3 |
x4 |
|
|
y1 |
f11 |
f21 |
f31 |
f41 |
f-1 |
|
y 2 |
f12 |
f22 |
f32 |
f42 |
f-2 |
|
y 3 |
f13 |
f23 |
f33 |
f43 |
f-3 |
|
|
f1- |
f2- |
f3- |
f4- |
N |
В этой таблице внутри прямоугольника, выделенного жирной чертой, находятся частоты fij, которые отражают число людей в выборке, имеющих какое-то значениеxiпри условии, чтоy=yj. Эти частоты называютсяусловными частотами.
Сумма частот по столбикам обозначена как fi-— этобезусловные частотыпризнакаxi. Они показывают, сколько человек в выборке имеют значениеxiбезотносительно к значениям признака у.
Сумма частот по столбикам обозначена как f-j— этобезусловные частотыпризнака уi. Они показывают, сколько человек в выборке имеют значение уiбезотносительно к значениям признака х.
На основании таких таблиц сопряженности рассчитываются многие меры связи.
Взаимосвязи между признаками характеризуются силой связи и ее направлением. О силе взаимосвязи свидетельствует абсолютное значение расчетной меры связи: чем она больше, тем сильнее взаимосвязь. О направлении взаимосвязи мы судим по знаку расчетной меры связи5: положительный знак — взаимосвязь прямая или положительная, отрицательный знак — взаимосвязь обратная или отрицательная.
Проиллюстрировать направление взаимосвязей можно при помощи следующего рисунка.

Рис. 17. Диаграммы рассеивания первичных данных для случаев различных взаимосвязей между ними
Предположим, у некоторой группы испытуемых измерены два признака — X(ось абсцисс) иY(ось ординат). Каждый испытуемый на такой двумерной плоскости займет строго определенное место в зависимости от сочетания значений признаковXиYу данного человека.
На графике слева показана диаграмма рассеивания для случая положительной зависимости между признаками (рост значений одного признака сочетается с ростом значений другого признака).
Средний график иллюстрирует отрицательную зависимость: рост значений одного признака сочетается с уменьшением значений другого признака.
График справа — отсутствие зависимости: четкой закономерности сочетания значений признаков не прослеживается, встречаются любые варианты.
Взаимосвязи характеризуются двумя свойствами: силой и направлением. О силе взаимосвязи мы судим по абсолютной величине данной меры: чем она больше, тем сильнее взаимосвязь. На направление зависимости (прямая или обратная взаимосвязь) нам указывает знак данной меры: положительный знак свидетельствует о прямой зависимости, отрицательный знак — об обратной.
Для принятия решения о наличии или отсутствии взаимозависимости между признаками в корреляционном анализе существует правило вывода: Расчетное значение по абсолютной величине сравнивается с табличным значением. Если оно больше или равно критическому (табличному) значению, то делается вывод о наличии взаимозависимости (или взаимосвязь между признаками статистически значима, или взаимосвязь между признаками статистически достоверна). При этом обязательно указывается уровень значимости вывода: прир=0,95 или=0,05 (более слабая взаимосвязь) илир=0,99 или=0,01 (более сильная взаимосвязь).
Для облегчения задачи выбора меры связи, адекватной данному случаю, целесообразно воспользоваться таблицей 13. В этой таблице меры связи приведены в соответствие тем измерительным шкалам, по которым измерены признаки, между которыми необходимо найти взаимосвязь.
Таблица 13
