
- •Санкт-Петербургский Государственный Институт Психологии и Социальной Работы
- •Математические методы в психологии Учебно-методическое пособие
- •Аннотация
- •Глава 1. Описательная статистика 18
- •Глава 2. Индуктивная статистика 84
- •Оглавление
- •Глава 1. Описательная статистика 12
- •Глава 2. Индуктивная статистика 78
- •Введение Цели и задачи изучения дисциплины «Математические методы в психологии» и сфера профессионального использования
- •Методические указания для студентов
- •Контрольные вопросы для самостоятельной подготовки и самопроверки
- •Глава 1. Описательная статистика
- •1. 1. Математическая статистика и психология. Измерения в психологии и виды шкал
- •Материалы лекции.
- •Типы измерений и измерительные шкалы
- •Генеральная совокупность и выборочное исследование. Статистическая достоверность
- •Этапы обработки результатов психологического исследования
- •1. 2. Описание результатов исследования
- •Материалы лекции.
- •Результаты исследования экстраверсии
- •Алгоритм построения сгруппированного (или табулированного) ряда
- •Общий обзор параметров распределений
- •1. 3. Параметры статистических совокупностей
- •Материалы лекции.
- •Результаты исследования экстраверсии
- •Исключение выскакивающих значений
- •Нормальный закон распределения и другие виды распределений
- •Проверка «нормальности» эмпирического распределения
- •Стандартизация данных и стандартизованные шкалы в психологии
- •Процентильные нормы для детей 5;5 – 11 лет
- •1. 4. Характеристики взаимосвязи признаков
- •Материалы лекции. Понятие статистической зависимости
- •Общий обзор мер связи
- •Коэффициент контингенции
- •Критерий «хи-квадрат» Пирсона
- •Ранжирование
- •Правила ранжирования
- •Бисериальные коэффициенты корреляции
- •Коэффициент взаимной сопряженности Чупрова
- •Коэффициент взаимной сопряженности Пирсона
- •Ранговой коэффициент корреляции Спирмена
- •Коэффициент линейной корреляции Пирсона
- •Глава 2. Индуктивная статистика
- •2. 1. Решение задачи сравнения выборок. Понятие статистических критериев и их виды
- •Материалы лекции. Статистические гипотезы
- •Уровень статистической значимости
- •Этапы принятия статистического решения
- •Классификация исследовательских задач, решаемых с помощью статистических методов
- •Решение задачи сравнения выборок
- •4. Каковы ограничения в применении критерия?
- •Обзор наиболее часто применяемых параметрических критериев
- •Общий обзор непараметрических критериев
- •2. 2. Выявление различий в уровне исследуемого признака
- •Материалы лекции. Параметрический критерий Стьюдента для сравнения независимых выборок
- •Поправка Снедекора
- •Правило принятия решения описано выше. Непараметрический критерий Розенбаума (критерий «хвостов»)
- •Непараметрический критерий Манна-Уитни
- •2. 3. Оценка достоверности сдвига в значениях исследуемого признака
- •Материалы лекции.
- •Параметрический критерий Стьюдента для сравнения зависимых выборок
- •Непараметрический критерий знаков
- •6. Правило принятия решения:
- •Непараметрический критерий Вилкоксона
- •2. 4. Выявление различий в распределении признака
- •Материалы лекции. Критерий «хи-квадрат» Пирсона
- •Критерий Колмогорова-Смирнова
- •2. 5. Многофункциональные статистические критерии
- •Материалы лекции.
- •Критерий φ* — «Угловое преобразование» Фишера
- •Алгоритм расчета критерия φ*
- •Критерий Макнамары
- •Алгоритм расчет критерия
- •2. 6. Дисперсионный анализ
- •Материалы лекции. Введение в дисперсионный анализ anova
- •Однофакторный дисперсионный анализ
- •2. 7. Многомерные методы обработки данных
- •Материалы лекции.
- •I. Классификация методов по назначению:
- •II. Классификация методов по исходным предположениям о структуре данных:
- •III. Классификация методов по виду исходных данных:
- •Множественный регрессионный анализ
- •Матрица корреляций пяти показателей интеллекта
- •Факторные нагрузки после варимакс-вращения
- •1. Эксплораторный-разведочный.
- •2. Конфирматорный.
- •1. Выбор исходных данных.
- •2. Предварительное решение проблемы числа факторов.
- •3. Факторизация матрицы интеркорреляций.
- •4. Вращение и предварительная интерпретация факторов (ротация факторов).
- •5. Принятие решения о качестве факторной структуры.
- •6. Вычисление факторных коэффициентов и оценок.
- •Компьютерные пакеты прикладных статистических программ
- •Список литературы
- •Приложение 1. Статистические таблицы с критическими значениями
- •1.1. Критические значения отношения для исключения выскакивающих значений
- •1.2. Критические значения коэффициента ранговой корреляции Спирмена
- •1.3. Критические значения коэффициента линейной корреляции Пирсона
- •1.4. Критические значения критерия хи-квадрат Пирсона
- •1.5. Критические значения критерия Стьюдента
- •1.6. Критические значения критерия Фишера
- •1.7. Критические значения непараметрического критерия Манна-Уитни
- •1.8. Критические значения непараметрического критерия Вилкоксона
- •1.9. Таблицы для перевода процентных долей в величины центрального угла для расчета критерия «угловое преобразование» Фишера
- •Приложение 2. Глоссарий
- •Приложение 3. Англо-русский словарь статистических терминов
Нормальный закон распределения и другие виды распределений
Рис. 14. Кривая нормального распределения
Нормальный закон4распределения во всех естественных науках имеет фундаментальное значение. И в психологических дисциплинах его значение трудно переоценить. Достаточно сказать, что все психологические шкалы основываются на этом законе, поскольку ему следуют распределения большинства человеческих способностей и свойств.
Самой общей характеристикой нормального распределения является простое наблюдение того закономерного факта, что очень большие центральные отклонения (xi–M) встречаются крайне редко, а маленькие часто, при этом одинаковые по модулю отклонения одинаково вероятны. Такая закономерность может иметь место в условиях, когда на случайную величину хiдействует большое число разнообразных факторов и доля воздействия каждого из них одинаково мала по сравнению с их числом.
Свойства нормального распределения:
При всех значениях переменной хiплотность положительна.
Плотность симметрична относительно математического ожидания, которое в этой связи нередко называют центром рассеивания (для симметричных распределений). Коэффициент асимметрии равен нулю.
При увеличении модуля аргумента кривая сколь угодно близко приближается к оси абсцисс, не достигая ее.
Численные значения среднего арифметического, моды и медианы совпадают.
Плотность нормального распределения быстро убывает по мере увеличения значений центрированной случайной величины, выраженных в единицах стандартного отклонения. Следует запомнить, что
± σ = 0,683;
± 2σ = 0,954;
± 3σ = 0,997.
При значениях – σ и + σ на кривой стандартной плотности на кривой дифференциального распределения) имеются точки смены кривизны (перегиба): на участке (– σ ≤ Х ≤ + σ) функция плотности вогнута вниз, а за его пределами, наоборот, вогнута вверх.
Несмотря на то, что теоретически нормальный закон распределения предполагает существование бесконечно малых и бесконечно больших значений любой, следующей ему величины, на практике (тем более в психологии) случайные переменные имеют конечные области существования. Поэтому на практике используются функции нормального распределения, ограниченные слева и справа основными отклонениями: ± 4.
Гамма-распределение
Рис. 15. Гамма-распределение
Гамма-распределение находит в психологии все более широкое применение благодаря тому, что большинство случайных временных интервалов, так или иначе характеризующих психическую активность, подчиняется именно этому распределению. В частности, время многих реакций человека подчинено гамма-распределению. Ему следуют также общие (суммарные) затраты времени на последовательность рабочих действий, слабо зависящие (или не зависящие) друг от друга, причем величина этих затрат для разных действий может значительно варьировать, согласно условию, сформулированному выше.
Экспоненциальное распределение
Экспоненциальное распределение обладает следующими свойствами: 1) крайняя асимметрия частостей; 2) равенство среднего арифметического и стандартного отклонения.
Наиболее широко экспоненциальный закон распределения используется в психологических приложениях теории надежности и теории массового обслуживания. В частности ему следует распределение времени между различными ошибочными действиями человека, выполняющего некоторую работу.
Биномиальное распределение
Пусть выполняется nнезависимых испытаний, в каждом из которых может появиться некоторое случайное событие А, безусловная вероятность появления которого постоянна и равна Р, а вероятность его непоявления 1 – Р. Последовательность событий, образованная таким образом, называется последовательностью Бернулли. Вероятность того, что в последовательности Бернулли длиной вnиспытаний некоторое событие А появится ровноmраз, и отражается биномиальным распределением.
В психологии биномиальное распределение используется всегда, когда требуется определить априорную вероятность появления изучаемого события в серии независимых испытаний известной длины. В частности, известные попытки доказать существование телепатической связи основываются на сравнении вероятности ответов перцепиента с априорной вероятностью случайного угадывания, вычисляемой по биномиальному распределению. Аналогичное сравнение проводится в исследованиях обнаружения пороговых стимулов и вообще там, где требуется установить зависимость (или независимость) возможности появления какого-либо события от определенных факторов.