Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
30
Добавлен:
13.02.2015
Размер:
166.91 Кб
Скачать

Работа 5

Изучение явления термоэдс.

Теоретическое введение

§1. Эффект Зеебека

  1. В

    Рис. 1.1

    1823г. Т. Зеебек обнаружил, что замкнутой цепи состоящей из двух разнородных проводников возникает электродвижущая сила (термоэдс), если контакты находятся при различных температурах (рис. 1.1а). Явление возникновения термоэдс наблюдается и в одном проводнике, если его концы находятся при разных температурах (рис. 1.1б). Величина термоэдс прямо пропорциональна разности температур. Величина (1.1) называется коэффициентом дифференциальной термоэдс. При наличии градиента температур в замкнутой цепи из двух проводников возникает относительная термоэдс (1.2). Коэффициент называется относительной термоэдс или коэффициент удельной термоэдс данной пары проводников.

  2. Существуют три причины возникновения термоэдс: образование направленного потока носителей в проводнике при наличии градиента температур (объемная составляющая ), изменение положения уровня Ферми с температурой (контактная составляющая ) и увлечение электронов квантами тепловых колебаний кристаллической решетки – увлечение фононами.

§2. Механизмы возникновения термоэдс

  1. О

    Рис. 1.2

    бъемная (диффузионная) составляющая термоэдс возникает вследствие того, что концентрация электронов с более высокой энергией ( > Ф) у нагретого конца будет больше, чем у холодного, а концентрация электронов с более низкой энергией ( < Ф) будет, наоборот, у нагретого конца меньше. Вследствие этого возникнет диффузионный поток электронов от горячего концу к холодному. Холодный конец получит избыточный отрицательный заряд по отношению к горячему и поэтому возникнет внутри проводника электрическое поле, направленное навстречу градиенту (рис. 1.2).

П

Рис. 1.3

риблизительную оценку объемной составляющей термоЭДС можно произвести следующим образом. Электронный газ создает в проводнике давление (1.3), где - средняя энергия электронов полупроводнике, а n – концентрация. Наличие градиента температур вызывает перепад давления. Возникающее электрическое поле уравновешивает перепад давления. Действительно, рассмотрев равновесие элементов объема (рис. 1.3) газа носителей тока, получаем: ; ; (1.4)

Учитывая, что перепад давления вызван градиентом температуры, преобразуем (1.4) к виду:

;

Отсюда для термоэдс получаем: . Соответственно для коэффициента термоэдс ОБ получаем: (1.6)

Учитывая (1.3), можно уточнить выражение (1.6):

(1.7)

Анализ выражения (1.7) показывает, что причиной возникновения объемной части термоэдс является во-первых, изменение средней энергии носителей тока () и во-вторых, изменение концентрации носителей тока ().

Особенности возникновения объемной термоэдс в металлах и полупроводниках n и p типа представлены в таблице.

Металл

Полупроводник

n-типа

Полупроводник

p-типа

Из анализа таблицы можем сделать следующие выводы:

  • Знак термоэдс зависит от знака носителей тока;

  • Учитывая сильную зависимость концентрации носителей тока в полупроводниках n и p типа, коэффициент термоэдс в полупроводниках значительно выше, чем в металлах.

2.Контактная составляющая термоэдс обусловлена возникновением внутренней контактной разности между холодным и нагретым концами проводника вследствие температурной зависимости положения уровня Ферми.

Внутренняя контактная разность потенциалов, возникающая в проводнике

(1.8)

Коэффициент дифференциальной термоэдс К тогда будет иметь вид: (1.9)

Изменение уровня Ферми с увеличением температуры иллюстрирует таблица.

Металл

Полупроводник

n-типа

Полупроводник

p-типа

при Т=0К

Снижение уровня Ферми на нагретом конце компенсируется переходом носителей к нагретому концу при этом уровень электрохимического потенциала остается неизменным. Возникающая при этом термоэдс имеет другой знак по сравнению с .

  1. Эффект увлечения носителей тока фононами (квантами тепловых колебаний) вызывает дополнительный дрейф носителей тока от нагретого конца к холодному. Накопление носителей тока на холодном конце и обеднение на нагретом конце вызывает появление термоэдс . Этот эффект играет существенную роль при низких температурах.

Результирующий коэффициент дифференциальной термоэдс

(1.10)

При нормальных и высоких температурах:

Более детальный расчет дает такие результаты:

У металлов:

У полупроводников n-типа:

У полупроводников p-типа: ,

Где p в зависимости от характера взаимодействия носителей с кристаллической решеткой принимает значения от 0 до 2.

Число . Для металлов , поэтому  составляет несколько единиц . Для полупроводников и поэтому  составляет сотни, а иногда и тысячи .

Практическая часть

Упражнение 1. Определение коэффициента термоэдс

С хема установки представлена на рис. 1

Г

Рис. 1

радиент на образце создается с помощью нагревателя (НЭ). Измерение градиента температур происходит на основе:, ()

с использованием медь-константовых термопар. Ключом К1 осуществляется поочередное подключение термопар к милливольтметру, измеряющему термоэдс. Ключ К2 переключает измерительный прибор либо для измерения Т, либо для измерения возникающей термоэдс.

Измеряемая термоэдс снимается с использованием электродов, присоединенных в точках а и б. Непосредственное подключение электронного вольтметра к точкам а и б возможно если сопротивление образца R12 много меньше входного сопротивления милливольтметра (R12 << Rвх).

П ри исследованиях полупроводников это условие может не выполняться. В этом случае необходимо использовать метод компенсации (рис. 2).

Ц

Рис. 2

елью исследования является изучение зависимости термоэдс от градиента температур на образце и определение .

Выполнение работы

  1. Собрать схему с учетом указания преподавателя в низкоомности или высокоомности образца.

  2. Измерения проводятся при различных токах в цепи нагревательного элемента до 0,325 А. Устанавливая значения тока в интервале 0–Jmax добиваются различных значений градиента и соответствующих значений термоэдс. При измерениях следует дожидаться установления градиента, о чем, в частности, будет свидетельствовать неизменность с течением времени . Результаты измерений заносятся в таблицу.

J

T1-T2

cp

i

cp

4

Соседние файлы в папке Магистры I спецпрактикум