
- •В.Г.Чуйко Радиоэлектронные измерения
- •Глава один. Введение.
- •1.1. Предмет радиоизмерений.
- •1.2. Устройства радиотехники и электроники как объекты измерений.
- •1.3. Цели радиоизмерений
- •1.4. Измерительные задачи на различных стадиях научно-производственного процесса.
- •Глава два. Измерения. Погрешности измерений.
- •2.1. Понятие “измерение”.
- •2.2. Классификация измерений. Результат измерения.
- •2.3. Погрешности измерений и их классификация.
- •2.4. Систематические погрешности
- •2.5. Способы уменьшения систематических погрешностей
- •2.6. Случайные погрешности измерений
- •2.7. Способы оценивания и выражения случайных погрешностей.
- •Глава три Средства и методы измерений.
- •3.1. Классификация средств измерений.
- •3.2. Погрешности средств измерений.
- •3.3. Методы измерений.
- •3.4. Условия измерений.
- •Глава четыре. Радиоизмерения.
- •4.1. Классификация радиоизмерений.
- •4.2. Некоторые особенности радиоизмерений.
- •4.3. Классификация радиоизмерительных приборов по измеряемым величинам.
- •4.4. Классификация радиоизмерительных приборов по их месту в производственном процессе и условиям эксплуатации.
- •4.5. Вопросы выбора универсальных рип. Технические требования к рип. Нормируемые характеристики.
- •Глава пять. Составные части радиоизмерительных приборов.
- •5.1. Меры физических величин в радиоизмерительных приборах.
- •5.1.1. Меры частоты.
- •5.1.2. Меры напряжения постоянного тока.
- •5.1.3. Меры сопротивления на постоянном токе.
- •5.1.4. Меры емкости.
- •5.1.5. Меры индуктивности.
- •5.1.6. Меры мощности шумового излучения.
- •5.1.7. Меры волнового сопротивления и коэффициента отражения.
- •5.2. Преобразователи величин в радиоизмерительных приборах.
- •5.2.1. Масштабные преобразователи.
- •Делители напряжения.
- •Измерительные усилители.
- •Измерительные трансформаторы напряжения и тока.
- •Делители мощности.
- •Измерительные аттенюаторы.
- •Резистивные коаксиальные аттенюаторы.
- •5.2.2. Устройства визуализации результатов измерений.
- •5.2.3. Аналого-цифровые преобразователи.
- •Ацп интервал времени - цифровой код.
- •Ацп постоянное напряжение - интервал времени - цифровой код.
- •Ацп постоянное напряжение-частота.
- •Ацп поразрядного уравновешивания.
- •5.2.4. Преобразователь мгновенных значений переменного напряжения в цифру.
- •5.2.5. Аналоговый преобразователь мгновенных напряжений - электронно-лучевая трубка.
- •Осциллографические электронно-лучевые трубки.
- •Запоминающие трубки.
- •5.2.6. Преобразователи переменного синусоидального напряжения в постоянное.
- •5.2.7. Преобразователи импульсных напряжений в постоянное - Амплитудный детектор.
- •5.2.8. Выпрямительный детектор среднеквадратического значения.
- •Термоэлектрический преобразователь среднеквадратического значения.
- •Частотные детекторы.
- •5.2.9. Преобразователи разности фаз в постоянное напряжение - фазовый детектор.
- •5.2.10. Преобразователь измерения частоты в постоянное напряжение - частотный детектор.
- •5.2.11. Преобразователи мощности свч в постоянное напряжение.
- •5.3 Обобщенная структурная схема радиоизмерительного прибора.
- •5.3.1. Структурная схема прямого преобразования.
- •5.3.2. Структурная схема уравновешивающего преобразования.
- •5.3.3. Структурные схемы реальных приборов.
- •Глава шесть Измерения напряжений.
- •6.1. Вольтметры.
- •6.1.1 Вольтметры амплитудных значений.
- •6.1.2. Вольтметры среднеквадратических значений.
- •6.1.3. Вольтметры средневыпрямленных значений.
- •Особенности цифровых вольтметров переменного напряжения.
- •6.1.4. Вольтметры импульсных напряжений.
- •Компенсационные импульсные вольтметры.
- •6.1.5. Измерения нелинейных искажений
- •6.1.6. Измерения мгновенных значений переменного напряжения.
- •Основные нормируемые метрологические характеристики осциллографа.
- •6.2. Измерения частоты.
- •6.2.1. Меры частоты.
- •6.2.2. Электронносчетный частотомер.
- •6.2.3. Метод сравнения.
- •6.2.4. Гетеродинный частотомер.
- •6.3 Измерения разности фаз.
- •6.3.1 Фазовращатели - меры фазового сдвига.
- •6.3.2 Устройства сравнения.
- •6.3.3 Осциллографические измерения фазового сдвига.
- •6.3.4. Компенсационный метод измерения фазового сдвига.
- •6.3.5. Измеритель фазового сдвига с преобразованием во временной интервал.
- •6.3.6. Цифровой фазометр.
- •6.3.7. Измерения фазового сдвига с гетеродинным преобразованием частоты.
- •Глава семь Измерения мощности свч и ослаблений на свч.
- •7.1. Измерения мощности при высоких и сверхвысоких частотах в закрытых трактах.
- •7.2. Принципы и методы измерений. Основные аксиомы.
- •Измерительные задачи.
- •Принципы измерений.Физические явления, процессы, которые используют для измерений мощности свч.
- •Методы измерений.
- •7.3. Виды конструктивного исполнения ваттметров свч.
- •Обобщенная схема теплового ваттметра свч поглощаемой мощности.
- •7.4 Калориметрические измерители мощности.
- •Конструкции поглотителей и нагревателей.
- •Конструкции поглотителей и нагревателей проточных калориметров.
- •Конструкции измерителей приращения температуры.
- •Дифференциальная схема калориметра.
- •Блоки измерительные калориметрических измерителей мощности.
- •Источники и составляющие погрешностей калориметрических измерителей мощности.
- •7.5 Термоэлектрические ваттметры.
- •Преобразователи термоэлектрических ваттметров.
- •Измерительные блоки термоэлектрических и калориметрических ваттметров.
- •Погрешности метода.
- •Достоинства и недостатки метода.
- •Метод вольтметра.
- •Диодные преобразователи и измерительные блоки ваттметров.
- •Погрешности метода.
- •Достоинства и недостатки метода.
- •7.6 Термисторные ваттметры свч.
- •Конструкция волноводного первичного преобразователя.
- •Первичные измерительные преобразователи.
- •Волноводные термисторные преобразователи.
- •Основные технические характеристики волноводных термисторных преобразователей, используемых в практике измерений.
- •Измерительные блоки термисторных ваттметров.
- •7.7 Измерения ослабления
- •Метод отношения мощностей
- •Гетеродинные измерители ослабления. Измерительный приемник
- •Глава восемь Измерения коэффициента отражения.
- •8.1Области применения.
- •8.2. Определение физической величины. Понятие неоднородности тракта передачи волны.
- •Определение коэффициента отражения как измеряемой величины.
- •8.3 Измерительные задачи.
- •8.4. Принципы и методы измерений ксвн. Принципы измерений.
- •Метод измерений ксвн с помощью измерительной линии.
- •Методика измерений ксвн
- •Сравнение с мерой.
- •Погрешности результата измерений, получаемого с помощью измерительной линии.
- •8.5. Принцип и метод измерений модуля коэффициента отражения.
- •Метод измерений модуля коэффициента отражения “по определению”.
- •Погрешности измерений модуля коэффициента отражения рефлектометром.
- •Конструкция рефлектометра.
- •8.6 Автоматизация измерений с помощью рефлектометра.
- •Что такое автоматизация. Цели автоматизации измерений.
- •Пути, способы автоматизации.
- •Устройства, необходимые для автоматизации радиоизмерений на свч.
- •8.7 Панорамный измеритель коэффициентов отражений и передачи на свч.
- •Глава девять Измерения шумов электронных устройств.
- •9.1 Измерительные задачи.
- •9.2. Принципы измерения мощности шумов.
- •9.3. Методы измерений.
- •9.4 Метод измерительного аттенюатора – нулевой метод.
- •9.5 Нулевой модуляционный метод измерения .
- •9.5 Автоматизированные измерители коэффициента шума.
- •Глава десять. Обеспечение единства измерений.
- •10.1. Государственная система обеспечения единства измерений.
- •10.2. Нормативная база гси.
- •10.3. Организационные основы гси. Государственная метрологическая служба.
- •10.4. Метрологический контроль и надзор.
- •6.5. Эталоны
- •10.6. Поверочные схемы. Поверка и калибровка.
- •10.7. Метрологические характеристики средств измерений.
- •10.7. Методики выполнения измерений. Назначение методики выполнения измерений
- •Содержание документа на мви
- •Метрологическая экспертиза и аттестация документа на мви.
- •Заключение
- •Содержание
Погрешности метода.
Так же как и для болометрического метода, источники можно разделить на две группы. Это источники, относящиеся к преобразователю и к измерительному блоку соответственно.
К погрешностям преобразователя относят:
погрешность, обусловленную неточностью определения действительного значения коэффициента эффективности с помощью образцовых средств,
; при использовании для этих целей калибраторов мощности М1-4 ... М1-11 и приборов Я2М-21 ... Я2М-24 в сочетании с измерительным блоком ваттметра МЗ-22 данная погрешность составляет ±(1,5 2,5%);
погрешность, обусловленную нелинейностью коэффициента преобразования термопреобразователя в динамическом диапазоне,
; достижимое значение этой погрешности порядка ±(0,5 2%);
погрешность калибровки от опорного источника мощности,
; достижимое значение данной погрешности ±(0,5 1,6%);
погрешность, обусловленную отражением мощности от входа термопреобразователя,
; при введении поправки на
значение неисключенной погрешности составит ±0,04% при
;
погрешность рассогласования
, значение которой определяют из выражения (3.24).
К погрешностям измерительного блока относят:
погрешность калибровки на постоянном токе,
; достижимое значение погрешности при цифровом отсчете ±(0,2 0,3%);
погрешность, обусловленную временным дрейфом,
;
значение этой погрешности пренебрежимо мало, и ее обычно не учитывают.
Пользуясь
выражением (3.25), можно показать, что
достижимая погрешность метода составит
без учета погрешности рассогласования.
Достоинства и недостатки метода.
Достоинства метода: широкий частотный диапазон (от десятков мегагерц до десятков гигагерц); малая зависимость результата измерения от температуры окружающей среды; малое время подготовки приборов к измерениям; быстродействие; технологическая возможность изготовления термопар на различные уровни мощности.
Недостатки метода: ограниченный сверху динамический диапазон и невысокая устойчивость к импульсным сигналам, что ограничивает применение термоэлектрических преобразователей для измерения среднего значения мощности импульсно-модулированных сигналов.
Метод вольтметра.
Мощность,
рассеиваемую нагрузкой, можно определить,
зная действующее напряжение U
и полное сопротивление нагрузки
:
, (7.19)
где
(R,
X
- активная и реактивная составляющие
полного сопротивления нагрузки
соответственно).
Если нагрузка активная, мощность можно выразить в виде
, (7.20)
Аналогичное выражение для мощности, рассеиваемой в нагрузке, сопротивление которой активно и равно ,
, (7.21)
где - среднеквадратическое значение напряжения на согласованной нагрузке; - волновое сопротивление линии передачи.
Таким образом, измерение СВЧ мощности можно свести к измерению напряжения на согласованной нагрузке с помощью высокочастотного вольтметра, шкала которого откалибрована в единицах мощности. Этот метод измерения мощности принято называть методом вольтметра.
Измерение
напряжения в цепях с распределенными
постоянными на частотах выше 100 МГц
связано с рядом трудностей. Во-первых,
практически не удается получить нагрузку
с полным сопротивлением, равным волновому
сопротивлению линии передачи, т. е.
.
Следовательно,
, (7.22)
где UH - напряжение на нагрузке.
Во-вторых,
величина
зависит:
от согласования нагрузки и генератора с линией передачи и места включения входной части вольтметра в передающий тракт, т.е.
, (7.23)
где
,
- комплексные значения коэффициентов
отражения генератора и нагрузки;
от частотных свойств детектирующего элемента преобразователя.
Чтобы уменьшить влияние указанных факторов или частично их компенсировать, применяют ваттметры, у которых детектирующий элемент, как часть первичного измерительного преобразователя, устанавливают либо непосредственно на входе согласованной нагрузки (рис. 7.27а) или на ее части (рис. 7.27б), либо детектирующий элемент монтируют внутри резистора (рис. 7.28). При такой конструкции длина соединительных проводников может быть сделана минимальной и зависимость показаний ваттметра от длины волны уменьшается до приемлемой.