
- •В.Г.Чуйко Радиоэлектронные измерения
- •Глава один. Введение.
- •1.1. Предмет радиоизмерений.
- •1.2. Устройства радиотехники и электроники как объекты измерений.
- •1.3. Цели радиоизмерений
- •1.4. Измерительные задачи на различных стадиях научно-производственного процесса.
- •Глава два. Измерения. Погрешности измерений.
- •2.1. Понятие “измерение”.
- •2.2. Классификация измерений. Результат измерения.
- •2.3. Погрешности измерений и их классификация.
- •2.4. Систематические погрешности
- •2.5. Способы уменьшения систематических погрешностей
- •2.6. Случайные погрешности измерений
- •2.7. Способы оценивания и выражения случайных погрешностей.
- •Глава три Средства и методы измерений.
- •3.1. Классификация средств измерений.
- •3.2. Погрешности средств измерений.
- •3.3. Методы измерений.
- •3.4. Условия измерений.
- •Глава четыре. Радиоизмерения.
- •4.1. Классификация радиоизмерений.
- •4.2. Некоторые особенности радиоизмерений.
- •4.3. Классификация радиоизмерительных приборов по измеряемым величинам.
- •4.4. Классификация радиоизмерительных приборов по их месту в производственном процессе и условиям эксплуатации.
- •4.5. Вопросы выбора универсальных рип. Технические требования к рип. Нормируемые характеристики.
- •Глава пять. Составные части радиоизмерительных приборов.
- •5.1. Меры физических величин в радиоизмерительных приборах.
- •5.1.1. Меры частоты.
- •5.1.2. Меры напряжения постоянного тока.
- •5.1.3. Меры сопротивления на постоянном токе.
- •5.1.4. Меры емкости.
- •5.1.5. Меры индуктивности.
- •5.1.6. Меры мощности шумового излучения.
- •5.1.7. Меры волнового сопротивления и коэффициента отражения.
- •5.2. Преобразователи величин в радиоизмерительных приборах.
- •5.2.1. Масштабные преобразователи.
- •Делители напряжения.
- •Измерительные усилители.
- •Измерительные трансформаторы напряжения и тока.
- •Делители мощности.
- •Измерительные аттенюаторы.
- •Резистивные коаксиальные аттенюаторы.
- •5.2.2. Устройства визуализации результатов измерений.
- •5.2.3. Аналого-цифровые преобразователи.
- •Ацп интервал времени - цифровой код.
- •Ацп постоянное напряжение - интервал времени - цифровой код.
- •Ацп постоянное напряжение-частота.
- •Ацп поразрядного уравновешивания.
- •5.2.4. Преобразователь мгновенных значений переменного напряжения в цифру.
- •5.2.5. Аналоговый преобразователь мгновенных напряжений - электронно-лучевая трубка.
- •Осциллографические электронно-лучевые трубки.
- •Запоминающие трубки.
- •5.2.6. Преобразователи переменного синусоидального напряжения в постоянное.
- •5.2.7. Преобразователи импульсных напряжений в постоянное - Амплитудный детектор.
- •5.2.8. Выпрямительный детектор среднеквадратического значения.
- •Термоэлектрический преобразователь среднеквадратического значения.
- •Частотные детекторы.
- •5.2.9. Преобразователи разности фаз в постоянное напряжение - фазовый детектор.
- •5.2.10. Преобразователь измерения частоты в постоянное напряжение - частотный детектор.
- •5.2.11. Преобразователи мощности свч в постоянное напряжение.
- •5.3 Обобщенная структурная схема радиоизмерительного прибора.
- •5.3.1. Структурная схема прямого преобразования.
- •5.3.2. Структурная схема уравновешивающего преобразования.
- •5.3.3. Структурные схемы реальных приборов.
- •Глава шесть Измерения напряжений.
- •6.1. Вольтметры.
- •6.1.1 Вольтметры амплитудных значений.
- •6.1.2. Вольтметры среднеквадратических значений.
- •6.1.3. Вольтметры средневыпрямленных значений.
- •Особенности цифровых вольтметров переменного напряжения.
- •6.1.4. Вольтметры импульсных напряжений.
- •Компенсационные импульсные вольтметры.
- •6.1.5. Измерения нелинейных искажений
- •6.1.6. Измерения мгновенных значений переменного напряжения.
- •Основные нормируемые метрологические характеристики осциллографа.
- •6.2. Измерения частоты.
- •6.2.1. Меры частоты.
- •6.2.2. Электронносчетный частотомер.
- •6.2.3. Метод сравнения.
- •6.2.4. Гетеродинный частотомер.
- •6.3 Измерения разности фаз.
- •6.3.1 Фазовращатели - меры фазового сдвига.
- •6.3.2 Устройства сравнения.
- •6.3.3 Осциллографические измерения фазового сдвига.
- •6.3.4. Компенсационный метод измерения фазового сдвига.
- •6.3.5. Измеритель фазового сдвига с преобразованием во временной интервал.
- •6.3.6. Цифровой фазометр.
- •6.3.7. Измерения фазового сдвига с гетеродинным преобразованием частоты.
- •Глава семь Измерения мощности свч и ослаблений на свч.
- •7.1. Измерения мощности при высоких и сверхвысоких частотах в закрытых трактах.
- •7.2. Принципы и методы измерений. Основные аксиомы.
- •Измерительные задачи.
- •Принципы измерений.Физические явления, процессы, которые используют для измерений мощности свч.
- •Методы измерений.
- •7.3. Виды конструктивного исполнения ваттметров свч.
- •Обобщенная схема теплового ваттметра свч поглощаемой мощности.
- •7.4 Калориметрические измерители мощности.
- •Конструкции поглотителей и нагревателей.
- •Конструкции поглотителей и нагревателей проточных калориметров.
- •Конструкции измерителей приращения температуры.
- •Дифференциальная схема калориметра.
- •Блоки измерительные калориметрических измерителей мощности.
- •Источники и составляющие погрешностей калориметрических измерителей мощности.
- •7.5 Термоэлектрические ваттметры.
- •Преобразователи термоэлектрических ваттметров.
- •Измерительные блоки термоэлектрических и калориметрических ваттметров.
- •Погрешности метода.
- •Достоинства и недостатки метода.
- •Метод вольтметра.
- •Диодные преобразователи и измерительные блоки ваттметров.
- •Погрешности метода.
- •Достоинства и недостатки метода.
- •7.6 Термисторные ваттметры свч.
- •Конструкция волноводного первичного преобразователя.
- •Первичные измерительные преобразователи.
- •Волноводные термисторные преобразователи.
- •Основные технические характеристики волноводных термисторных преобразователей, используемых в практике измерений.
- •Измерительные блоки термисторных ваттметров.
- •7.7 Измерения ослабления
- •Метод отношения мощностей
- •Гетеродинные измерители ослабления. Измерительный приемник
- •Глава восемь Измерения коэффициента отражения.
- •8.1Области применения.
- •8.2. Определение физической величины. Понятие неоднородности тракта передачи волны.
- •Определение коэффициента отражения как измеряемой величины.
- •8.3 Измерительные задачи.
- •8.4. Принципы и методы измерений ксвн. Принципы измерений.
- •Метод измерений ксвн с помощью измерительной линии.
- •Методика измерений ксвн
- •Сравнение с мерой.
- •Погрешности результата измерений, получаемого с помощью измерительной линии.
- •8.5. Принцип и метод измерений модуля коэффициента отражения.
- •Метод измерений модуля коэффициента отражения “по определению”.
- •Погрешности измерений модуля коэффициента отражения рефлектометром.
- •Конструкция рефлектометра.
- •8.6 Автоматизация измерений с помощью рефлектометра.
- •Что такое автоматизация. Цели автоматизации измерений.
- •Пути, способы автоматизации.
- •Устройства, необходимые для автоматизации радиоизмерений на свч.
- •8.7 Панорамный измеритель коэффициентов отражений и передачи на свч.
- •Глава девять Измерения шумов электронных устройств.
- •9.1 Измерительные задачи.
- •9.2. Принципы измерения мощности шумов.
- •9.3. Методы измерений.
- •9.4 Метод измерительного аттенюатора – нулевой метод.
- •9.5 Нулевой модуляционный метод измерения .
- •9.5 Автоматизированные измерители коэффициента шума.
- •Глава десять. Обеспечение единства измерений.
- •10.1. Государственная система обеспечения единства измерений.
- •10.2. Нормативная база гси.
- •10.3. Организационные основы гси. Государственная метрологическая служба.
- •10.4. Метрологический контроль и надзор.
- •6.5. Эталоны
- •10.6. Поверочные схемы. Поверка и калибровка.
- •10.7. Метрологические характеристики средств измерений.
- •10.7. Методики выполнения измерений. Назначение методики выполнения измерений
- •Содержание документа на мви
- •Метрологическая экспертиза и аттестация документа на мви.
- •Заключение
- •Содержание
2.4. Систематические погрешности
Систематическая погрешность измерения - это составляющая погрешности результата измерения, остающаяся постоянной или же закономерно изменяющаяся при повторных измерениях одной и той же ФВ. В зависимости от характера изменения систематические погрешности подразделяются на постоянные, прогрессивные и погрешности, изменяющиеся по более сложным законам, например, периодические.
Постоянные систематические погрешности в течение длительного времени сохраняют свое значение, например, в течение заданного временного интервала. Они встречаются наиболее часто. Например, погрешность, возникающая из-за того, что характеристика детектора считается квадратичной во всем диапазоне входных напряжений, в то время как показатель степени зависит от амплитуды входного напряжения.
Прогрессивные погрешности - это непрерывно возрастающие или убывающие погрешности. Например, погрешности, связанные с систематическим износом узлов средства измерений, с прогревом измерительных приборов и т. п. Простейший бытовой пример - это определение момента времени при помощи часов с постоянной систематической погрешностью хода. В этом случае с каждым днем погрешность определения времени возрастает.
Периодические погрешности чаще всего проявляются при наличии внешних циклических воздействий или при измерении циклических величин (измерения разности фаз синусоидальных колебаний). Простейший пример - башенные часы с люфтом стрелок. Очевидно, что под воздействием силы тяжести, действующей на стрелки, при наличии люфта возникает периодическая систематическая погрешность отсчета времени. Другой пример - измерение распределения поля в раскрыве антенны. При движении зонда и измерении при его помощи интенсивности поля возникает периодическая интерференционная погрешность, обусловленная переотражением сигнала между антенной и зондом.
В зависимости от причин появления систематические погрешности подразделяют на погрешности метода измерений (методические), погрешности из-за отклонений внешних условий от установленных, инструментальные погрешности (погрешности средства измерений), субъективные погрешности.
К методическим относят погрешности, возникающие из-за несовершенства метода измерений.
Инструментальные – это погрешности результата измерений, обусловленные несовершенством применяемых средств измерения. Например, конечная разрешающая способность измерительного прибора ограничивают возможности уменьшения погрешности измерений.
Субъективные (мнимые) погрешности связаны с индивидуальными особенностями наблюдателя (оператора).
По возможностям учета и исключения (уменьшения) систематические погрешности разделяют на три группы. Первая группа - это погрешности, природа которых известна и численное значение также известно. В этом случае в результат измерения обычно можно внести поправку. Поправка - это значение ФВ, одноименной с измеряемой, вводимое в неисправленный результат измерения с целью исключения одной из систематических составляющих погрешности. Например, при измерении мощности и энергии оптического квантового генератора (лазера) приемником излучения (например, фотодиодом) часть энергии, падающей, на вход приемника, отражается. Измерив коэффициент отражения приемника, можно ввести поправку на значение отраженной энергии и учесть таким способом составляющую систематической погрешности из-за отражения. Поправка равна абсолютной систематической погрешности с обратным знаком. Другой способ исправления результата измерений - это умножение результата измерения на поправочный множитель. В приведенном примере можно поступить по другому, а именно - определить коэффициент поглощения приемника излучения и умножить результат на поправочный множитель, равный обратному коэффициенту поглощения. Поправочный множитель - это числовой коэффициент, на который умножают неисправленный результат измерения с целью исключения (уменьшения) влияния систематической погрешности. Ввести поправку можно только при выполнении следующих необходимых условий:
имеются априорные сведения об объекте измерения, принципе и методе измерения, средстве измерения, достаточные для построения модели;
проведен теоретический расчет составляющих систематической погрешности на модели и определены численные значения поправок;
проведены эксперименты по определению численных значений поправок (поправочных множителей).
Вторую группу систематических погрешностей составляют такие, природа которых известна, однако их значение и (или) знак неизвестны, так что поправка не может быть введена. Эти погрешности называют неисключенными систематическими. Они остаются неиcключенными до тех пор, пока не придуманы и не реализованы способы их учета, то есть пока не выполнены необходимые процедуры, перечисленные выше. Указывают обычно границы неисключенной систематической погрешности как значение суммы всех отдельных ее составляющих.
Третью группу составляют систематические погрешности, природа которых неизвестна, то есть мы не подозреваем об их существовании в силу ограниченности наших знаний о процессах, происходящих в измерительных средствах, о характере взаимодействия средства измерений и объекта измерений.
Изучение и исключение систематических погрешностей измерения является одной из наиболее сложных научных задач в области метрологии, поскольку требует глубокого понимания не только принципа работы средств измерений, но и физических явлений, происходящих в объекте измерения, а также при взаимодействии объекта и средства измерений. Поэтому весьма желательный перевод систематических погрешностей из третьей группы в первую сопряжен с постоянной инженерной и исследовательской творческой работой.