
- •В.Г.Чуйко Радиоэлектронные измерения
- •Глава один. Введение.
- •1.1. Предмет радиоизмерений.
- •1.2. Устройства радиотехники и электроники как объекты измерений.
- •1.3. Цели радиоизмерений
- •1.4. Измерительные задачи на различных стадиях научно-производственного процесса.
- •Глава два. Измерения. Погрешности измерений.
- •2.1. Понятие “измерение”.
- •2.2. Классификация измерений. Результат измерения.
- •2.3. Погрешности измерений и их классификация.
- •2.4. Систематические погрешности
- •2.5. Способы уменьшения систематических погрешностей
- •2.6. Случайные погрешности измерений
- •2.7. Способы оценивания и выражения случайных погрешностей.
- •Глава три Средства и методы измерений.
- •3.1. Классификация средств измерений.
- •3.2. Погрешности средств измерений.
- •3.3. Методы измерений.
- •3.4. Условия измерений.
- •Глава четыре. Радиоизмерения.
- •4.1. Классификация радиоизмерений.
- •4.2. Некоторые особенности радиоизмерений.
- •4.3. Классификация радиоизмерительных приборов по измеряемым величинам.
- •4.4. Классификация радиоизмерительных приборов по их месту в производственном процессе и условиям эксплуатации.
- •4.5. Вопросы выбора универсальных рип. Технические требования к рип. Нормируемые характеристики.
- •Глава пять. Составные части радиоизмерительных приборов.
- •5.1. Меры физических величин в радиоизмерительных приборах.
- •5.1.1. Меры частоты.
- •5.1.2. Меры напряжения постоянного тока.
- •5.1.3. Меры сопротивления на постоянном токе.
- •5.1.4. Меры емкости.
- •5.1.5. Меры индуктивности.
- •5.1.6. Меры мощности шумового излучения.
- •5.1.7. Меры волнового сопротивления и коэффициента отражения.
- •5.2. Преобразователи величин в радиоизмерительных приборах.
- •5.2.1. Масштабные преобразователи.
- •Делители напряжения.
- •Измерительные усилители.
- •Измерительные трансформаторы напряжения и тока.
- •Делители мощности.
- •Измерительные аттенюаторы.
- •Резистивные коаксиальные аттенюаторы.
- •5.2.2. Устройства визуализации результатов измерений.
- •5.2.3. Аналого-цифровые преобразователи.
- •Ацп интервал времени - цифровой код.
- •Ацп постоянное напряжение - интервал времени - цифровой код.
- •Ацп постоянное напряжение-частота.
- •Ацп поразрядного уравновешивания.
- •5.2.4. Преобразователь мгновенных значений переменного напряжения в цифру.
- •5.2.5. Аналоговый преобразователь мгновенных напряжений - электронно-лучевая трубка.
- •Осциллографические электронно-лучевые трубки.
- •Запоминающие трубки.
- •5.2.6. Преобразователи переменного синусоидального напряжения в постоянное.
- •5.2.7. Преобразователи импульсных напряжений в постоянное - Амплитудный детектор.
- •5.2.8. Выпрямительный детектор среднеквадратического значения.
- •Термоэлектрический преобразователь среднеквадратического значения.
- •Частотные детекторы.
- •5.2.9. Преобразователи разности фаз в постоянное напряжение - фазовый детектор.
- •5.2.10. Преобразователь измерения частоты в постоянное напряжение - частотный детектор.
- •5.2.11. Преобразователи мощности свч в постоянное напряжение.
- •5.3 Обобщенная структурная схема радиоизмерительного прибора.
- •5.3.1. Структурная схема прямого преобразования.
- •5.3.2. Структурная схема уравновешивающего преобразования.
- •5.3.3. Структурные схемы реальных приборов.
- •Глава шесть Измерения напряжений.
- •6.1. Вольтметры.
- •6.1.1 Вольтметры амплитудных значений.
- •6.1.2. Вольтметры среднеквадратических значений.
- •6.1.3. Вольтметры средневыпрямленных значений.
- •Особенности цифровых вольтметров переменного напряжения.
- •6.1.4. Вольтметры импульсных напряжений.
- •Компенсационные импульсные вольтметры.
- •6.1.5. Измерения нелинейных искажений
- •6.1.6. Измерения мгновенных значений переменного напряжения.
- •Основные нормируемые метрологические характеристики осциллографа.
- •6.2. Измерения частоты.
- •6.2.1. Меры частоты.
- •6.2.2. Электронносчетный частотомер.
- •6.2.3. Метод сравнения.
- •6.2.4. Гетеродинный частотомер.
- •6.3 Измерения разности фаз.
- •6.3.1 Фазовращатели - меры фазового сдвига.
- •6.3.2 Устройства сравнения.
- •6.3.3 Осциллографические измерения фазового сдвига.
- •6.3.4. Компенсационный метод измерения фазового сдвига.
- •6.3.5. Измеритель фазового сдвига с преобразованием во временной интервал.
- •6.3.6. Цифровой фазометр.
- •6.3.7. Измерения фазового сдвига с гетеродинным преобразованием частоты.
- •Глава семь Измерения мощности свч и ослаблений на свч.
- •7.1. Измерения мощности при высоких и сверхвысоких частотах в закрытых трактах.
- •7.2. Принципы и методы измерений. Основные аксиомы.
- •Измерительные задачи.
- •Принципы измерений.Физические явления, процессы, которые используют для измерений мощности свч.
- •Методы измерений.
- •7.3. Виды конструктивного исполнения ваттметров свч.
- •Обобщенная схема теплового ваттметра свч поглощаемой мощности.
- •7.4 Калориметрические измерители мощности.
- •Конструкции поглотителей и нагревателей.
- •Конструкции поглотителей и нагревателей проточных калориметров.
- •Конструкции измерителей приращения температуры.
- •Дифференциальная схема калориметра.
- •Блоки измерительные калориметрических измерителей мощности.
- •Источники и составляющие погрешностей калориметрических измерителей мощности.
- •7.5 Термоэлектрические ваттметры.
- •Преобразователи термоэлектрических ваттметров.
- •Измерительные блоки термоэлектрических и калориметрических ваттметров.
- •Погрешности метода.
- •Достоинства и недостатки метода.
- •Метод вольтметра.
- •Диодные преобразователи и измерительные блоки ваттметров.
- •Погрешности метода.
- •Достоинства и недостатки метода.
- •7.6 Термисторные ваттметры свч.
- •Конструкция волноводного первичного преобразователя.
- •Первичные измерительные преобразователи.
- •Волноводные термисторные преобразователи.
- •Основные технические характеристики волноводных термисторных преобразователей, используемых в практике измерений.
- •Измерительные блоки термисторных ваттметров.
- •7.7 Измерения ослабления
- •Метод отношения мощностей
- •Гетеродинные измерители ослабления. Измерительный приемник
- •Глава восемь Измерения коэффициента отражения.
- •8.1Области применения.
- •8.2. Определение физической величины. Понятие неоднородности тракта передачи волны.
- •Определение коэффициента отражения как измеряемой величины.
- •8.3 Измерительные задачи.
- •8.4. Принципы и методы измерений ксвн. Принципы измерений.
- •Метод измерений ксвн с помощью измерительной линии.
- •Методика измерений ксвн
- •Сравнение с мерой.
- •Погрешности результата измерений, получаемого с помощью измерительной линии.
- •8.5. Принцип и метод измерений модуля коэффициента отражения.
- •Метод измерений модуля коэффициента отражения “по определению”.
- •Погрешности измерений модуля коэффициента отражения рефлектометром.
- •Конструкция рефлектометра.
- •8.6 Автоматизация измерений с помощью рефлектометра.
- •Что такое автоматизация. Цели автоматизации измерений.
- •Пути, способы автоматизации.
- •Устройства, необходимые для автоматизации радиоизмерений на свч.
- •8.7 Панорамный измеритель коэффициентов отражений и передачи на свч.
- •Глава девять Измерения шумов электронных устройств.
- •9.1 Измерительные задачи.
- •9.2. Принципы измерения мощности шумов.
- •9.3. Методы измерений.
- •9.4 Метод измерительного аттенюатора – нулевой метод.
- •9.5 Нулевой модуляционный метод измерения .
- •9.5 Автоматизированные измерители коэффициента шума.
- •Глава десять. Обеспечение единства измерений.
- •10.1. Государственная система обеспечения единства измерений.
- •10.2. Нормативная база гси.
- •10.3. Организационные основы гси. Государственная метрологическая служба.
- •10.4. Метрологический контроль и надзор.
- •6.5. Эталоны
- •10.6. Поверочные схемы. Поверка и калибровка.
- •10.7. Метрологические характеристики средств измерений.
- •10.7. Методики выполнения измерений. Назначение методики выполнения измерений
- •Содержание документа на мви
- •Метрологическая экспертиза и аттестация документа на мви.
- •Заключение
- •Содержание
6.1.3. Вольтметры средневыпрямленных значений.
Вольтметры средневыпрямленных значений содержат преобразователь переменного напряжения в постоянное, пропорциональное СВЗ измеряемого напряжения. Простейшие преобразователи этого типа были рассмотрены в гл. 4. Они обычно выполняются на основе двухполупериодных выпрямителей. Эти преобразователи в качестве нелинейного элемента содержат вакуумные или полупроводниковые диоды, не содержат накопительных емкостей и поэтому обладают большим быстродействием по сравнению с вольтметрами СКЗ и пиковыми. Чтобы детектор работал на линейном участке вольтамперной характеристики, на него надо подать сравнительно большой сигнал (0,10,3 В). Поэтому вольтметры СВЗ для обеспечения высокой чувствительности в широкой полосе частот должны иметь широкополосный усилитель переменного напряжения. Высокими качествами последнего в значительной мере будет определяться качество вольтметра. На точность измерений в значительной мере будет влиять нелинейность вольтамперной характеристики, нестабильности параметров диодов, усилителя, других элементов выпрямителя. Для уменьшения этил влияний схему обычно охватывают глубокой отрицательной обратной связью.
Рис. 6.5. Функциональная схема электронного вольтметра.
На рис. 6.5 изображена функциональная схема электронного вольтметра СВЗ. Измеряемое напряжение поступает на входное устройство, которое обеспечивает высокое входное сопротивление вольтметра и расширение пределов измерения. Затем напряжение подается на вход широкополосного усилителя и после усиления - на преобразователь переменного напряжения в постоянное. Схема охвачена глубокой отрицательной обратной связью, напряжение обратной связи снимается с резистора и подается на вход усилителя . Благодаря обратной связи исключается влияние диодов на коэффициент преобразования преобразователя переменного напряжения в постоянное. Кроме того, улучшаются характеристики усилителя: уменьшается его нестабильность и нелинейность амплитудной характеристики. В диагональ диодного моста включен магнитоэлектрический прибор, показания которого соответствует СВЗ входного напряжения.
Оценим
коэффициент преобразования схемы:
усилитель - диодный мост. Обозначим
амплитуду напряжения на выходе усилителя
,
а амплитуду напряжения, поступающего
с входного устройства на вход усилителя
.
Тогда амплитуда тока
при
и
будет
,
а напряжение обратной связи
.
Запишем
соотношение между выходными и входными
напряжениями усилителя:
.
Подставив последнее соотношение в выражение для , получим
. (6.4)
Постоянная составляющая падения напряжения на сопротивлении R очевидно будет равна среднему значению полуволны напряжения за период, т. е.
, (6.5)
а напряжение в диагонали моста
, (6.6)
учитывая,
что
,
где
- средневыпрямленное значение измеряемого
напряжения на входе усилителя, получаем
,
где
.
При
большом коэффициенте усиления К,
так что
,
.
Таким образом, коэффициент преобразования схемы при этих условиях не зависит от сопротивления диодов. Однако нестабильности сопротивлений моста и сопротивления обратной связи будут оказывать влияние на коэффициент преобразования. Очевидно, уравнение преобразования для вольтметра (с учетом входного устройства) можно записать
. (6.7)
Если
и
,
то
.
Заметим, что в некоторых вольтметрах СВЗ индицируется постоянная составляющая не напряжения в диагонали моста, а напряжения между точкой b и точкой нулевого потенциала. Это напряжение через фильтр нижних частот подается, например, на аналого-цифровой преобразователь цифрового вольтметра.
Серийные вольтметры В3-38, В3-39, В3-44 построены по схемам, подобным рассмотренным.
Современные вольтметры СВЗ обеспечивают измерение напряжений от десятых долей милливольта до сотен вольт в диапазоне частот 20 Гц...10 МГц. Основная погрешность составляет 2,5...10 %.
Шкалы вольтметра СВЗ градуируются в СКЗ. Приборы осуществляют процесс измерений за 0,2 ...0,5 с, т. е. являются самыми быстродействующими среди вольтметров переменного напряжения.