
- •Контрольная 2
- •1. Белковый обмен
- •2. Углеводный обмен
- •3. Жировой обмен
- •4. Водный обмен
- •5. Минеральный обмен (Na, k, p, Mg, s, Cl)
- •6. Минеральный обмен (Fe, Co, Cu, Mn, Zn, I)
- •7. Обмен энергии – методы исследования, валовая, переваримая и обменная энергия, регуляция обмена энергии
- •8. Жирорастворимые витамины
- •9. Водорастворимые витамины
- •10. Регуляция дыхания
- •11. Механизм легочного дыхания (вдох, выдох). Жизненная емкость легких, состав вдыхаемого, выдыхаемого и альвеолярного воздуха
- •12. Газообмен в легких и тканях. Типы и частота дыхания
- •13. Особенности дыхания в различных условиях (физическая нагрузка, высокогорье, погружение на большие глубины). Особенности дыхания при мышечной работе
- •14. Пищеварение – его типы. Виды обработки пищи. Основные функции органов пищеварения
- •15. Механизм жевания, глотание. Пищеварение в ротовой полости
- •16. Слюна – состав, значение. Слюнообразование. Слюноотделение.
- •17. Особенности желудочного пищеварения у птиц и животных с однокамерным желудком
- •18. Пищеварение в желудке. Состав и свойства желудочного сока. Роль соляной кислоты в пищеварении. Регуляция желудочной секреции
- •19. Особенности желудочного пищеварения у млекопитающих животных
- •20. Поджелудочный сок – состав, механизмы его секреции и регуляции. Желчь, состав, значение, механизм регуляции ее выделения
- •21. Пищеварение в кишечнике. Моторная функция желудка и кишечника
- •22. Всасывание белков, жиров, углеводов и минеральных веществ
- •23. Органы выделения и их физиологическое значение. Строение нефрона и методы изучения работы почек
- •24. Мочеобразование и его регуляция
- •25. Мочевыделение. Физико-химические свойства мочи
- •26. Общие свойства анализаторов. Принципы организации сенсорных путей
- •27. Зрительный анализатор – строение, механизм аккомодации, острота зрения, бинокулярное и цветовое зрение
- •28. Особенности строения зрительного анализатора, движения глаз, механизм восприятия света
- •29. Слуховой анализатор – строение, механизм передачи звука, слуховая чувствительность, регуляция деятельности органа слуха
- •30. Вестибулярный анализатор – строение, восприятие положения тела, ускорений, механизмы чувства равновесия
- •31. Обонятельный анализатор – строение, механизм восприятия вкуса
- •32. Вкусовой анализатор – строение, механизм восприятия вкуса
- •33. Кожный анализатор – строение, тепловая, холодовая, тактильная и болевая чувствительность
- •34. Физиология кожи – значение кожи, потоотделение, секреция кожного сала, рецепторы кожи, проницаемость кожи, обмен веществ в коже, пигменты кожи, волосяной покров
- •35. Терморегуляция (химическая, физическая). Терморегуляция при низких и высоких температурах окружающей среды
13. Особенности дыхания в различных условиях (физическая нагрузка, высокогорье, погружение на большие глубины). Особенности дыхания при мышечной работе
Ответ. При физической работе. Во время выполнения физической работы мышцам необходимо большое количество кислорода. Потребление 02 и продукция СО2 возрастают при физической нагрузке в среднем в 15 - 20 раз. Обеспечение организма кислородом достигается сочетанным усилением функции дыхания и кровообращения. Уже в начале мышечной работы вентиляция легких быстро увеличивается. В возникновении гиперпноэ в начале физической работы периферические и центральные хеморецепторы как важнейшие чувствительные структуры дыхательного центра еще не участвуют. Уровень вентиляции в этот период регулируется сигналами, поступающими к дыхательному центру главным образом из гипоталамуса, лимбической системы и двигательной зоны коры большого мозга, а также раздражением проприорецепторов работающих мышц. По мере продолжения работы к нейрогенным стимулам присоединяются гуморальные воздействия, вызывающие дополнительный прирост вентиляции. При тяжелой физической работе на уровень вентиляции оказывают влияние также повышение температуры, артериальная двигательная гипоксия и другие лимитирующие факторы. При подъеме на высоту человек оказывается в условиях пониженного атмосферного давления. Следствием понижения атмосферного давления является гипоксия, которая развивается в результате низкого парциального давления кислорода во вдыхаемом воздухе.При подъеме на высоту 1,5-2 км над уровнем моря не происходит значительного изменения снабжения организма кислородом и изменения дыхания. На высоте 2,5-5 км наступает увеличение вентиляции легких, вызванное стимуляцией каротидных хеморецепторов. Одновременно происходит повышение артериального давления и увеличение частоты сердечных сокращений. Все эти реакции направлены на усиление снабжения тканей кислородом. Увеличение вентиляции легких на высоте может привести к снижению парциального давления углекислого газа в альвеолярном воздухе - гипокапнии, при которой снижается стимуляция хеморецепторов, особенно центральных, это ограничивает увеличение вентиляции легких. После работ на больших глубинах специального внимания требует переход человека от высокого давления к нормальному. При быстрой декомпрессии, например, при быстром подъеме водолаза, физически растворенные в крови и тканях газы значительно больше обычного, не успевают выделиться из организма и образуют пузырьки. Кислород и углекислый газ представляют меньшую опасность, т. к. они быстро связываются кровью и тканями. Особую опасность представляет образование пузырьков азота, которые разносятся кровью и закупоривают мелкие сосуды (газовая эмболия), что сопряжено с большой опасностью для жизни. Состояние, возникающее при быстрой декомпрессии, называется кессонной болезнью, она характеризуется болями в мышцах, головокружением, рвотой, одышкой, потерей сознания, а в тяжелых случаях могут возникать параличи. При появлении признаков кессонной болезни необходимо немедленно вновь подвергнуть пострадавшего действию высокого давления (такого, с которого он начинал подъем), чтобы вызвать растворение пузырьков азота, а затем декомпрессию производить постепенно. Потребности мышц в кислороде и удалении из них углекислого газа находятся в прямой зависимости от интенсивности выполняемой физической работы. При умеренной физической работе вентиляция легких практически не возрастает, а высокий уровень газообмена в сокращающейся мускулатуре обеспечивается перераспределением крови (усиливается кровообращение в наиболее активных структурах и снижается в тканях находящихся в состоянии покоя) и увеличением утилизации кислорода из нее. Если в покое КУК не превышает 40%, то при интенсивной работе возрастает в 1,5 - 2 раза. Локальному (местному) увеличению кровообращения способствуют: повышение температуры в работающих мышцах, накопление углекислого газа и снижение рН. Перечисленные факторы характерны для активно работающих клеток и наряду с влиянием на сосуды облегчают диссоциацию оксигемоглобина. Последнему также способствует снижение напряжения кислорода в сокращающихся клетках. Значительное увеличение потребности животных в кислороде при тяжелой физической работе вызывает гипервентиляцию легких и усиление системного кровообращения. Причем, у тренированных животных эти показатели изменяются преимущественно за счет увеличения дыхательного объёма и сердечного выброса, а у нетренированных - учащения дыхания и сердечных сокращений. Наряду с рефлекторным усилением системного кровообращения, увеличению транспорта газов по сосудам способствует рост кислородной емкости крови (обусловлен дополнительным выходом в нее эритроцитов из депо и потерей кровью части воды вследствие потоотделения). Сокращение мышц приводит к возбуждению находящиеся в них и сухожилиях проприорецепторов, от которых афферентные импульсы поступают в дыхательный центр и повышают его возбудимость. Для интенсивной мышечной работы характерен высокий тонус симпатической нервной системы и усиление теплопродукции, что также способствует гипервентиляции легких.