Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекционный материал / Geometric_operations.ppt
Скачиваний:
17
Добавлен:
04.09.2023
Размер:
1.4 Mб
Скачать

Digital Image

Processing

Lecture 6: Image

GeometryProf. Charlene Tsai

Geometric Operations

Scale - change image content size

Rotate - change image content orientation

Reflect - flip over image contents

Translate - change image content position

Affine Transformation

general image content linear geometric transformation

2

Geometric transformations

Geometric transformations are common in computer graphics, and are often used in image analysis.

Geometric transforms permit the elimination of geometric distortion that occurs when an image is captured.

If one attempts to match two different images of the same object, a geometric transformation may be needed.

Examples?

3

Geometric Transformations

A geometric transform consists of two basic steps ...

Step1: determining the pixel co-ordinate transformation

mapping of the co-ordinates of the moving image pixel to the point in the fixed image.

T(x,y)

(x,y)

Fixed Image

Moving Image

 

4

Geometric transformations

Step2: determining the brightness of the points in the digital grid of the transformed image.

brightness is usually computed as an interpolation of the brightnesses of several points in the neighborhood.

T(x,y)

(x,y)

Fixed Image

Moving Image

xformed Moving Image

 

 

 

 

We’ll discuss step 2 first.

 

5

 

• Guessing at the function values within the known range is called interpolation.
• Interpolation has great significance in general image/video processing.
f (x)
Given a function f (x) at 4 points, how to “guess” values at other points?
Interpolation of Data

x1, x2, x3, x4 are original points

X’i are

new points

6

Another Example

Interpolation on an image (4x4 -> 8x8) after scaling

Open circle: Original image pixel

Closed circle:

New pixels

7

Interpolation: Nearest

1-D

We assign f (xi’ )=f (xj)

 

 

 

 

xj is the original point closest to x

 

 

 

The original function values

 

 

 

The interpolated values

2-D

 

x’

 

Origina

 

 

 

 

l point

 

Interpolated

 

 

 

 

point

 

 

y’

 

 

 

 

 

 

 

 

 

setting the pixel value on interpolated point to the pixel of closet image point

Interpolation: Linear (1D)

General idea:

original function values

To calculate the

interpolated values

interpolated

 

f(x2)-f(x1)

9

Interpolation: Linear (2D)

How a 4x4 image would be interpolated to produce an 8x8 image?

f x, y' f x, y 1 1 f x, y

4 original pixel values

f x 1, y' f x 1, y 1 1 f x 1, y

one interpolated pixel value

Along the y’ column we have

f x', y' f x 1, y' (1 ) f (x, y')

10

Соседние файлы в папке Лекционный материал