
- •Это все , что мне прислали
- •Детерминированные методы количественной оценки опасностей техносферы
- •2. Понятие «первичное облако».
- •3. Модель образования первичного облака
- •4. Парообразование за счет сброса давления.
- •5. Определение доли «мгновенно» испарившегося сжиженного газа.
- •6. Ионизирующие излучения.
- •7. Проникающая радиация
- •8. Способы защиты от проникающей радиации.
- •9. Степень ослабления радиации различными материалами.
- •10. Радиоактивное заражение местности.
- •11. Воздействие радиации на людей.
- •12. Доза излучения. Поглощенная доза ионизирующего излучения. Основные понятия и определение. Единицы измерения.
- •17. Формула Мацака. Уравнение Клапейрона-Клаузиуса.
- •18. Огневые шары.
- •19. Характер процесса образования огневого шара.
- •20. Зонирование территории по уровню теплового воздействия при образовании огневого шара.
- •21. Методика расчета интенсивности теплового излучения огневого шара.
- •22. Прогнозирование и оценка последствий аварий с выбросом химически опасных веществ.
- •23. Зонирование территории химического заражения.
- •26. Прогнозирование и оценка числа пораженных в зонах химического заражения
- •27 . Основы защиты населения
- •28. Взрыв газопаровоздушной смеси.
- •29. Оценка инженерной обстановки при детонационныхвзрывах гпвс
- •29. Оценка инженерной обстановки при дефлаграционных взрывах гпвс
- •30. Очаги поражения при авариях на взрывоопасных объектах
- •31. Зонирование очагов взрыва.
- •33. Методика оценки числа пораженных и количества разрушенных зданий в очаге взрыва.
- •36. Условие образования огневого шара
- •37. Условие вспышечного сгорания
- •38. Условия взрыва газопаровоздушной смеси.
- •39. Стехиометрическая смесь.
- •40. Взрывы облаков газопаровоздушных смесей.
- •16. Понятие ударной волны при взрывах облаков гпвс
- •17. Профиль и характерные параметры ув.
- •43. Особенности воздействия ув на человека, сооружения и тд
- •47. Методика расчета основных поражающих факторов взрыва
- •49. Типы реакторов аэс и их особенности.
- •Реактор на быстрых нейтронах
- •25. Классификация аварийных ситуаций на аэс.( методичка стр 92)
- •51) Методы оценки частоты аварии и вероятности развития аварии на опасном производственном объекте.
- •52)Инженерный метод, статистический метод, метод экспертных оценок.
- •55)Последовательность определения вероятности формирования поражающих факторов, привести пример построения дерева событий.
- •61)Математическая модель потенциального риска.
17. Формула Мацака. Уравнение Клапейрона-Клаузиуса.
Испарение за счет теплообмена с атмосферным воздухом
Скорость испарения жидкости зависит
- от рода жидкости (Р(Т)-парциальным давлением паров, ),
- от температуры жидкости в момент разгерметизации (Т),
- от скорости ветра (v10) над поверхностью жидкости.
Интенсивность или массовая скорость испарения определяется по формуле Мацака:
,
кг/(см2)
(Т,v) – интенсивность испарения вещества, кг/(см2);
Р(Т) – давление насыщенных паров вещества при температуре окружающей среды, Па;
– молекулярная масса;
v10 – скорость ветра на высоте 10 м (высота флюгера), м/с.
Давление насыщенного пара Рнп (Па) – давление пара, находящегося в равновесии с жидкостью.
Рнп тем выше, чем ниже Ткип. Характеризует летучесть вещества.
Определяется из справочной литературы или на основе расчетных методов:
1. Уравнение Клапейрона-Клаузиуса (описывает отношение между давлением пара p, теплотой испарения H и температурой T вещества: ln p = H/RT + константа)
,
кПа
Нкип – удельная теплота испарения, кДж/кг (или Дж/г);
R = 8,314 Дж/(мольК) – универсальная газовая постоянная.
М - молярная масса вещества, г/моль (М [г/моль]=)
Для пересчета на мольную теплоту испарения Дж/моль, удельная теплота испарения умножается на молярную массу вещества:
103Нкип[Дж/кг]×10-3[кг/моль]=Нкип[Дж/г]×[г/моль]=Нкип×=Н [Дж/моль];
Размеры ЗХЗ кроме массы аварийного выброса, также зависят от:
- метеоусловий,
- характера местности на пути распространения зараженного воздуха,
- условий хранения и характера выброса ядовитых веществ,
- степени токсичности вещества.
18. Огневые шары.
19. Характер процесса образования огневого шара.
Образование и горение огненного шара при выбросе и зажигании топлива в атмосфере — весьма сложный процесс, включающий нестационарное развитие горючего облака, его турбулентное смешение с окислителем, приводящее к возникновению горючей смеси, зажигание и распространение пламени по частично перемешанному газу, диффузионное горение топлива в переобогащенной смеси. В процессе образования и горения выброса важную роль играет начальный импульс газа, созданный источником, а после возгорания топлива — силы плавучести и процессы радиационного теплопереноса.
Эмпирические зависимости, полученные путем обработки результатов экспериментов и описывающие интегральные параметры (максимальный размер огненного шара, время жизни и высоту подъема горящего облака, мощность излучения с единицы поверхности) как функции массы вовлеченного топлива (см. обзор в разделе 3.1 Главы 3) позволяют провести экспресс-анализ аварийной ситуации и оценить ее максимально возможные последствия. При этом, однако, используется высокая степень схематизации, приводящая к существенному упрощению наблюдаемых явлений и сведению их многообразия к нескольким типовым сценариям. В то же время имеется очень мало экспериментальных сведений о внутренней концентрационно-тепловой и радиационной структуре огненных шаров. Отчасти это объясняется тем, что крупномасштабные опыты весьма дорогостоящи и опасны, а процесс горения в огненном шаре существенно нестационарен и имеет короткую протяженность по времени. Можно сказать, что до настоящего времени существует серьезное несоответствие между сложностью и многообразием процессов, происходящих при горении огненного шара, и имеющимся уровнем их понимания и описания.
В данных условиях весьма перспективным является использование методов математического моделирования, основанных на современных достижениях в описании турбулентных течений, турбулентного горения, радиационного теплопереноса и эффективных численных методах решения возникающих нестационарных неодномерных дифференциальных уравнений. При соответствующей верификации теоретические модели могут давать надежные данные, позволяющие глубже понять особенности процессов, протекающих при горении облака топлива в открытой атмосфере.
Рассмотрим основные подходы к моделированию огненных шаров, имеющиеся в настоящее время. Анализ литературных данных показывает, что развитие моделей огненных шаров происходило по тем же направлениям, что и моделирование тер-миков (см. Главы 1, 2). Напомним, что под огненным шаром понимается облако, в котором протекают химические реакции, поддерживающие высокую температуру в теле огненного шара на всем протяжении его жизни, т. е., до полного выгорания топлива. В термике же вся энергия выделяется при его образовании (например, в результате взрыва), так что в дальнейшем температура облака падает за счет смешения с окружающим холодным воздухом. Термик может рассматриваться как поздняя стадия развития огненного шара, начало которой совпадает с моментом окончания горения топлива.
Можно выделить два основных подхода к моделированию огненных шаров. Первый из них основан на упрощенном представлении геометрии и замене реального описания гидродинамики течения уравнениями сохранения массы, импульса и энергии, записанными для огненного шара в целом. Огненный шар аппроксимируется сферой, имеющей постоянную высокую температуру и всплывающей как целое в поле сил тяжести под действием суммарной выталкивающей силы. Для описания процессов турбулентного переноса используется гипотеза о вовлечении, предложенная еще в ранних работах по динамике термиков — см., например, [3]. Согласно этой гипотезе скорость вовлечения атмосферного воздуха в тело огненного шара пропорциональна линейной скорости вертикального подъема огненного шара (в качестве последней обычно используется скорость движения верхней кромки облака, иногда — скорость движения центра шара). В качестве силы, противодействующей силам плавучести, вводится сила сопротивления, а в ряде работ учитывается и эффект присоединенной массы (т. е., инерция среды, сквозь которую движется всплывающий огненный шар).
Примером модели огненного шара, предполагающей однородность параметров газа по объему облака, может служить подход, предложенный в работе [169]. Рассматривается первоначально неподвижный сферический объем газообразного топлива, который после зажигания начинает гореть в диффузионном режиме на границе с окружающей атмосферой, всплывая за счет действующей на нагретый газ выталкивающей силы. Считается, что скорость турбулентного горения определяется скоростью смешения топлива с воздухом. Поскольку в процессе горения объем нагретых продуктов значительно превосходит собственный объем топлива (например, при горении стехиометрической смеси метана с воздухом объем продуктов в 83 раза превышает начальный объем горючего), огненный шар предполагается состоящим из нагретых продуктов, а исходное количество топлива используется лишь для определения момента окончания горения.
На всем протяжении времени жизни огненный шар считается сферическим объемом нагретого газа с изменяющимися во времени радиусом, высотой и скоростью подъема, но с постоянными термодинамическими параметрами (абсолютной температурой, плотностью и составом продуктов, соответствующим горению топлива в воздухе при заданном эквивалентном отношении, которое не обязательно должно быть стехиометрическим, т. е., равным единице). Для огненного шара, движущегося в автомодельном режиме, записываются законы сохранения массы и вертикального импульса: скорость изменения объема огненного шара считается пропорциональной мгновенной скорости подъема (т. е., используется гипотеза о вовлечении), тогда как скорость изменения вертикального импульса шара приравнивается действующей на облако выталкивающей силе (при этом не учитываются силы сопротивления и эффекты присоединенной массы).
Интегрирование указанных уравнений сохранения показывает, что радиус огненного шара нарастает пропорционально высоте его подъема, причем, как и в моделях термиков, тангенс угла расширения облака равен коэффициенту пропорциональности между скоростью вовлечения и вертикальной скоростью подъема. Радиус и высота огненного шара нарастают со временем по квадратичному закону на всем протяжении горения топлива: r ~ t2, zt ~ t2. Максимальный радиус огненного шара (в момент окончания горения) пропорционален Vp/3, а время полного выгорания топ-
1 /6
лива пропорционально VF (здесь VF — начальный объем топлива). Фактически, две последние зависимости хорошо согласуются как с анализом размерностей для огненных шаров, подверженных лишь силам плавучести, так и с экспериментальными данными (см. обзор в Главе 3, раздел 3.1). Экспериментальные исследования, проведенные в более поздней работе [172], показали, однако, что приведенные выше квадратичные законы роста размера облака, следующие из модели [169], сильно завышают скорость расширения огненного шара. Измерения, проведенные для углеводородных облаков, дали значения показателя в законе нарастания радиуса огненного шара со временем, близкие к единице: так, для метана измеренный показатель степени оказался равным 0,84, для этана — 0,77, тогда как для пропана — 1,12. Основной причиной такого сильного несоответствия, согласно [172], является предположение о постоянстве термодинамических свойств среды в объеме огненного шара. В действительности же процесс горения оказывается сильно пространственно неоднородным, этот фактор трудно поддается учету в интегральных моделях c осреднением всех характеристик по объему огненного шара.
Близкая по сути, но несколько отличающаяся по реализации модель была использована в [205] для анализа подъема и излучения горящих сферических облаков водорода. В этой работе использованы основные положения, развитые ранее в [21,23—25,168]. Их отличительная особенность состоит в том, что при записи уравнения количества движения во внимание принимается присоединенная масса, учитывающая инерцию среды, в которой происходит подъем облака и равная половине массы воздуха, которая заняла бы текущий объем огненного шара. Для моделирования процесса горения использовалось эмпирическое соотношение из [21, 168], связывающее степень расширения облака с высотой его подъема. По степени расширения находилась текущая температура газа в огненном шаре. После нахождения состава и температуры газа в огненном шаре производились расчеты потоков инфракрасного излучения от горящего облака.