
- •Саратовский государственный технический университет
- •Краткий очерк истории развития физической химии
- •Разделы физической химии
- •1 Основы термодинамики
- •1.1 Природа энергии
- •1.2 Энергетические эффекты в химических реакциях
- •1.3 Энтальпия
- •1.4 Закон Гесса
- •1.5 Теплоты образования
- •1.6 Измерение изменений энергии, калориметрия
- •1.7 Теплотворная способность топлив и пищи
- •1.8 Потребление энергии: тенденции и перспективы
- •2 Химическая кинетика. Химическое равновесие
- •2.1 Скорость химических реакций
- •2.2 Зависимость скорости реакции от концентрации. Закон действия масс
- •2.3 Влияние температуры на скорость реакции. Правило Вант-Гоффа
- •2.4 Химическое равновесие и его смещение
- •2.4.1 Влияние изменения концентрации веществ на смещение химического равновесия
- •2.4.2 Влияние изменения давления на смещение химического равновесия, если в реакции участвуют газообразные вещества
- •2.4.3 Влияние изменения температуры на смещение химического равновесия
- •3 Свободная энергия. Энтропия и равновесие
- •3.1 Самопроизвольные процессы
- •3.2 Самопроизвольные процессы и изменение энтропии
- •3.3 Интерпретация энтропии на молекулярном уровне
- •3.4 Вычисление изменений энтропии
- •3.5 Функция свободной энергии
- •3.6 Свободная энергия и константа равновесия
- •4 Аналитические выражения основых законов термодинамики
- •4.1 Термодинамическая система и термодинамические функции.
- •Первый закон термодинамики
- •4.2 Второй закон термодинамики. Теорема Карно
- •4.3 Постулат Планка. Абсолютное значение энтропии
- •4.4 Характеристические функции. Приложение второго закона термодинамики
- •4.4.1 Изохорно-изотермический потенциал
- •4.4.2 Изобарно-изотермический потенциал
- •4.4.3 Уравнение максимальной работы (уравнение Гиббса-Гельмгольца)
- •4.4.4 Термодинамические потенциалы. Характеристические функции. Условия равновесия
- •4.5 Фазовые переходы. Уравнение Клайперона-Клаузиуса
- •4.5.1 Фазовые переходы первого рода. Плавление. Испарение
- •5 Поверхностные явления. Адсорбция
- •5.1 Изотеормы адсорбции газов. Уравнение Генри
- •5.2. Уравнение Лэнгмюра. Адсорбция смеси газов
- •5.3 Уравнение изотермы адсорбции паров Брунауера, Эммета и Теллера (уравнение бэт)
- •6 Правило фаз гиббса. Равновесие гетерогенных систем
- •6.1 Однокомпонентные системы
- •6.2 Двухкомпонентные системы с одной фазой переменного состава
- •6.2.1 Диаграмма плавкости двухкомпонентных систем, не образующих химических соединений и твердых растворов
- •6.2.2 Диаграммы плавкости систем, компоненты которых образуют химическое соединение
- •6.3 Термический анализ
- •6.4 Физико-химический анализ
- •7 Термодинамика и кинетика твердофазного
- •7.2 Основные типы реакций взаимодействия соединяемых материалов
- •I. Кристаллохимические реакции замещения катиона оксида.
- •III. Реакции взаимного растворения оксидов.
- •IV. Образование нового оксида при переменной валентности катиона.
- •V. Окисление металла в контакте с оксидами переменного состава.
- •VI. Реакции растворения оксида в металле.
- •VII. Реакции с частичным окислением свариваемого металла
- •7.3 Термодинамика и кинетика формирования соединений при слабом химическом взаимодействии материалов
4.4.4 Термодинамические потенциалы. Характеристические функции. Условия равновесия
Изохорно-изотермический и изобарно-изотермический потенциалы принадлежат к классу функций состояния системы, носящих название термодинамических потенциалов. Эти величины имеют размеренность энергии и стремятся к минимуму при протекании определенных процессов. Термодинамические потенциалы являются критериями направления процесса; минимальные значения их отвечают условию равновесия.
Из
уравнения (4.43), учитывая что
,
находим:
(4.76)
При
постоянных
и
(4.77)
При
всех неравновесных изохороно-изэнтропных
процессах ()
внутренняя энергияубывает;
когда величина
достигает минимума, система приходит
в равновесие. Условие равновесия:
;
(4.78)
Для
энтальпии выражение, аналогичное (4.76)
можно получить, дифференцируя уравнение
(4.22)
и сочетая полученное выражение с
уравнением (4.76):
(4.79)
При
постоянных
и
.
Условие равновесия:
;
(4.80)
Внутренняя
энергия является, таким образом,
изохорно-изэнтропным потенциалом, а
энтальпия – изобарно-изэнтропным
потенциалом. Эти функции могут служить
критериями равновесия при условии
постоянства энтропии. Так как энтропию
непосредственно измерить нельзя, поэтому
функции
и
не находят широкого применения.
Сопоставим
выражения (4.76), (4.79), (4.53) и (4.64) для полных
дифференциалов функций
,
,
и
.
Эти выражения образуют замкнутую группу,
в которой две пары переменных –
и
(параметры, связанные с теплотой), с
одной стороны, и
и
(параметры, связанные с работой), с другой
стороны, - дают все возможные сочетания.
В зависимости от характера изучаемого
процесса может быть использована та
или иная из этих функций.
Частными
производными четырех функций при данном,
характерном для каждой из них наборе
независимых переменных являются основные
параметры состояния системы:
,
,
и
.
Отсюда вытекает важное свойство этих
функций:через
каждую из этих функций и ее производные
можно выразить в явной форме любое
термодинамическое свойство системы.
Каждая функция
;
;
;
(4.81)
Поэтому указанные функции (термодинамические потенциалы) называют также характеристическими. На рис. 4.3. показана схема взаимосвязей характеристических функций и их переменных.
|
Рис.4.3. Схема взаимосвязи характеристических функций и их естественных переменных. |
Легко видеть, что характеристическими функциями могут являться не только указанные четыре потенциала, но и параметры, если выразить их как функции других величин.
Сопоставим следующие выражения:
;
;
;
;
;
На основании этого сопоставления можно сформулировать условия равновесия системы следующим образом: в состоянии равновесия системы термодинамические потенциалы ее имеют минимальное значение при постоянстве своих естественных переменных, а энтропия имеет максимальное значение при постоянстве внутренней энергии и объема системы.